CS 752 Project Report

Dynamic Instruction Reuse — SPEC{p92

December 4, 1997

Amit Marathe
Shilpa Sawale

Zak Smith

Abstract

This report further studies the phenomenon of dynamic instruction reuse as
proposed by Sodani and Sohi [1]. We analyze the behavior of SPEC{p92 benchmarks
to complement the SPECint92 results in [1]. Our results show that, like integer
programs, floating-point programs can gain significant speedup from a reuse buffer,
but reuse of floating-point instructions does not contribute a significant amount to

that speedup.

Introduction

Dynamic instruction reuse has recently been proposed by Sodani and Sohi [1] to
exploit the phenomenon of the dynamic instruction stream containing multiple
instructions with the same operands (and therefore producing the same values). They
observed that such instructions do not have to be executed repeatedly - if the results
of the first execution are stored in a reuse buffer (RB) then all later instructions can
simply read the result from the RB without having to go through all the phases of
execution. This reduces the latency and the contention for processor resources and
allows dependent instructions to proceed earlier. Of course, speeding up a bottleneck
resource often exposes another bottleneck and therefore does not lead to a matching
speedup in the system. Thus the speedup obtained from dynamic instruction reuse

is substantially lower than the percentage of instructions reused.

Oberman and Flynn [2] describe a special purpose RB, which only caches division
and reciprocal instructions. Their main motivation was that although division and
reciprocal instructions are relatively rare compared to other floating-point operations,
their latency is high because hardware designers tend to focus attention on the more
common instructions such as add and multiply. The high latency of divide and
reciprocate can contribute to interlocks due to data and structural hazards which
make it worthwhile to store the previous results in the RB. The general reuse
strategy we simulated alleviates this problem for all floating-point instructions, which
tend to have longer latency than most integer instructions. The general reuse
strategy yields a large performance gain over the division and reciprocal only design
because most reuse comes from program control structures that use integer

instructions as our data confirmed and as was found in [1].

Three schemes were proposed in [1] for implementing the RB. In all schemes the RB
operates as a cache for instruction results and is indexed by the low-order bits of the
program counter (PC). Each RB slot can store information for as many instructions as
the associativity of the RB. The schemes differ in the type and amount of additional

information stored in each RB entry that enables identification of instruction reuse.

The first scheme, Sv, stores the operand values and the tag (the high-order bits of PC)
along with the result in each RB entry. Whenever an instruction is decoded the PC is
used to identify a RB slot and a search is carried out for the operand values of the
instruction in all RB entries making up this slot. If a match is found the result can be
used directly, bypassing the execution stage. This scheme differs from the others in
that the RB entries for non-load/store operations are always valid and invalidations

are not required to ensure correct behavior.

The scheme Sn stores the source register identifiers instead of the operand values in
each RB entry. While this reduces the number of bits per RB entry it requires an
invalidation mechanism to maintain integrity - whenever an instruction writes into a
register, all RB entries having the same register as one of the source operands are

marked invalid and do not contribute to further reuse.

Scheme Sn+d is an extension of scheme Sn - it also stores the dependence
relationships between various instructions. This extra information allows multiple

dependent instructions to be issued in a single cycle (provided they form a

dependency chain and the first instruction in the chain can be reused) and thus

allow the processor to exceed its data-flow limit.

Originally, we proposed a study to determine which program structures generally
contribute to significant instruction reuse, but we decided that would have been too
much for one semester. As a result, we modified our proposal to a study of floating-
point reuse. To this end, we used the simulator developed by Avinash Sodani for his

research, which is an extension of the SimpleScalar tool set [3].

Our Work

Of all the implementation schemes for dynamic instruction reuse, we decided to
focus on the Sv scheme. The reason for this was twofold: first of all, because it is a
very simple scheme it can be simulated very easily in software with very little time
overhead. This was a significant factor influencing our decision given that we wanted
to analyze the reuse behavior of many benchmarks in a limited duration. Sv is the
best performing scheme for moderate to large RB size, and, more importantly, it
would be straightforward to implement in hardware, a direct consequence of its
simplicity. Thus we believe that not much was lost by our decision to run our

simulations only with the Sv scheme.

We chose to use the SPEC{p92 benchmarks to complement the SPECint92
benchmarks in [1]. We decided to perform our simulations with RB sizes of 256,
1024 and 4096 entries. On an out-of-order superscalar processor with a small RB,
the number of instructions issued before a FP operation completes would be greater
than the number of entries in the RB. FP instructions would thus tend to be flushed
out of the RB before they had a chance to be reused. Therefore a 32 entry RB, while it
has been studied for integer benchmarks [1], would be almost ineffective for FP
programs. Also because simulation time increases with RB size the results have been
restricted to 3 RB sizes which we felt were representative of the whole range from a
l-entry RB to an infinite RB. Moreover we decided to work with a fully associative

RB, as it did not differ significantly from a 4-way RB in terms of reuse behavior.

The capacity of the register update unit and the load-store queue has been

maintained at 32. We have just chosen reasonable values for these parameters -

small changes to these values are not going to change the results in a significant
way. A 2-bit branch predictor has been used in all the runs. It turns out that this
predictor is quite accurate for FP programs (consistently predicting about 95% of the
branches correctly) and thereby drastically reducing squash reuse. Therefore, while
the reuse behavior could be improved by working with a weaker predictor, that would
not be a good idea from a performance viewpoint. The other parameters take on their

default values.

Problems

Although our goal was to run every benchmark from SPECfp92, we were only able to
obtain valid results for 10 of the programs. The main obstacle for those that did not
complete was that after a large number of instructions had executed, but before the
first checkpoint, the simulator would crash. Some of the benchmarks which we did
obtain results did not run to completion, but did make it past one or more of the 100-
million-instruction checkpoints, giving us reasonably accurate data. The results we
obtained are given in the following graphs — values for runs that crashed are shown

as Zero.

Results

Discussion - tomcatv

The reuse in this program for the c.le.d instruction is probably due to common
convergence behavior. The code for tomcatv generates a mesh by iteration, and must
test the convergence of parameters to know when to terminate. In particular, one
test for loop termination depends on two conditions that could be transformed into
less-than-equal when compiled. It is likely that only one of these will change often,

and the other will stay constant, allowing it to be reused.

Discussion - mdljdp2
This program has many conditions that depend on the absolute value of arguments.
There are many such parameters used in the iterations, and not all of them change

between iterations.

Discussion — alvinn

Alvinn is a program that trains a neural network using back propagation. It is a
single precision floating-point benchmark, so it is not surprising that double
precision FP instructions do not contribute much to the total reuse. Of all the FP

instructions, mul_s is reused most often.

The branch prediction rate is very high (greater than 99% for all runs). Even then the
speedup obtained is comparable to that for other benchmarks with less accurate
branch prediction. From this we can conclude that general reuse in this benchmark

is compensating for the lack of squash reuse.

Discussion - fpppp

Fpppp is a double precision floating-point benchmark from quantum chemistry. It
does very little IO and is difficult to vectorize because of the presence of very large
basic blocks. The 4096-entry RB run of this benchmark did not complete; it crashed

after 400 million cycles.

Discussion - hydro2d

Hydro is a double precision floating-point benchmark from astrophysics, which
solves the Napier-Stokes equations. As with most of the other programs the 4096-
entry RB run did not complete. However the speedup obtained due to this RB size is
spectacular - going above 40% for one run. That such a high speedup is achieved
even with a 93% branch prediction rate suggests that most of the reused

instructions are integer ones associated with the bookkeeping code.

Discussion - su2cor

SuZ2cor is a benchmark that calculates the mass of elementary particles. The reuse
was not as focused on a specific one or two instruction types; it was spread evenly
over 6 instruction types. This suggests that the algorithm does some redundant

calculation.

Discussion - swm
Swm is a single-precision floating-point benchmark that solves the system of shallow
water equations on a 256x256 grid. All runs of swm completed without any errors.

The highest speedup obtained was 12.79%.

10

Discussion - ear
This is an inner ear model that filter and detects various sounds and generates

speech signals. There was no significant floating-point instruction reuse.

Discussion - spice
Spice simulates circuits built of primitive electrical components. Spice had
practically no floating-point instruction reuse, and but gained a 40% speedup for the

1K RB from general reuse.

Discussion - nasa7
Nasa7 is a collection of seven floating-point kernels. Nasa7 enjoyed the highest
speedup of all the benchmarks, in spite of zero floating-point instruction reuse.

Nasa7 also had the highest percentage of instruction reuse.

11

Percent

50

45

40

35

30

25

20

15

10

Speedup

Speedup

0256
m1024
004096

JI M A A R

tomcatv spice mdljdp2 nasa7 fpppp alvinn swm256 hydro ear su2cor
Benchmark

The speedups are comparable to those found for integer programs in [1]. One would
expect speedup to increase with RB size and that is true for most of the above
results.

The few anomalies are probably due to the fact that not all the simulations ran to
completion. Many benchmarks have different phases of execution that would have
different reuse behavior, due to which reuse behavior of incomplete runs is not

representative of the reuse behavior of the whole program.

12

Percent

70

60

50

40

30

20

10

Instruction Reuse

Reused Instructions

0256
m1024
04096

tomcatv spice mdljdp2 nasa?7 fpppp alvinn swm256 hydro ear su2cor
Benchmark

Reused instruction count is also comparable to the results published in [1]. This is
not surprising since most of the reuse comes from integer instructions. The
improvement in reuse percentage between the 1K and 4K cases is not as marked as
that between the 256 and 1K cases. This is also true for speedup. A comparison of
the above graphs also shows that the percentage reuse is much more than the

percentage speedup.

13

Reuse Percent

10

Floating-Point Instruction Reuse

Percentage FP Reuse

0256
m1024
04096

:

m 0

tomcatv spice mdljdp2 nasa7 fpppp alvinn swm256 hydro2d ear su2cor

Benchmark

The above graph shows how much of the total instruction reuse in the program came
from floating-point instructions. Since the latency of floating-point instructions is
higher than the latency of integer instructions, it is important that the RB is large
enough so a long-latency, floating-point instruction can stay in the RB until it can be
reused. This is probably why the 4K RB cases of fpppp and hydro2d have much more

reuse than their 1K runs.

14

Percent

40

35

30

25

20

15

10

Useful Inserts

Useful Inserts

0256
1024
004096

- i I

alvinn fpppp hydro swm ear su2cor spice mdljdp2 nasa’ tomcatv
Benchmark

In some cases, as the RB size is increases, the fraction of useful RB insertions

decreases. This suggests that the same performance could be attained using a

smaller RB size, if the insertion policy could distinguish between instructions that

are likely to be reused from those which are not likely to be reused.

15

Accuracy

Branch Prediction Accuracy

Branch Prediction Accuracy

100
95 -
90 -
85 -
) I
75 -
tomcatv spice mdljdp2 nasa7 fpppp alvinn swm256 hydro su2cor
Benchmark

One would expect that RB size has no effect on branch prediction rates. This is
nearly the case. We found that the prediction accuracy changed between RB sizes
not more than a percent. These changes can be attributed to timing changes due to
the shorted instructions, which could affect the history of the predictors. We show
the no RB case in this graph, because of the above reason, and we mean to only
show they are high. Since branch prediction rates are high, reuse of squashed

execution is reduced.

16

percentage

50

Summary of Floating-Point and Integer Speedups

Comparision Between Integer and Floating-point speedups

45

40

35

30

25

20

—e—Integer
—=— Floating point

15

10

Benchmarks

This graph shows the speedup obtained for integer and floating-point benchmarks
using a 1K RB. The data for the integer benchmarks is taken from [1]. Except for
nasa?, the speedups obtained are similar. The floating-point benchmarks generally
have less speedup, however. This is due to less squash reuse in floating-point
programs from higher branch-prediction accuracy, and floating-point instructions
that are unlikely to be reused displacing re-usable bookkeeping instructions in the

RB.

17

Conclusions

In general, reuse behavior and trends found in [1] also apply to the SPEC{p92
programs, for the Sv scheme. However, nearly all of the performance gains of the
floating-point benchmarks came from reuse of integer instructions. Even though
SPECfp92 benchmarks are very compute-intensive, most branches are predicted

correctly, thus squash reuse does not occur as often as in the integer programs.

No benchmark had more than 5% FP instruction reuse, which means FP reuse
contributes very little to overall performance gain. Because FP instructions are
rarely reused, it may be worthwhile to restrict insertion into the RB to only
instructions that are commonly reused. This would allow more performance gain in a

smaller area.

Performance gain measured by CPI increases with RB size until it plateaus. The
difference in performance gain between the 4K and 1K-entry RB was not very
significant. Moving to an 8K-entry RB would not improve performance for this type of

program.

18

Future Work

For the sake of completeness, it would be good to run the SPEC{p95 benchmarks to

verify our conclusions against those programs.

In Avinash’s paper, he found that certain operations are reused much more
frequently than other operations. Our overwhelming result was that floating--point
operations are rarely reused! Since we know reusing floating--point operations gives
no performance gain, we can prevent insertion into the reuse buffer so that more

slots are available for instructions which are more frequently reused.

A small percentage of instruction types contribute to the most reuse. To generalize
the idea in the previous paragraph, a study could be performed to determine, on a
range of workloads, which instructions yield little reuse, and what gains can be

achieved by only inserting commonly-reused operations into the reuse buffer.

To better characterize the reuse buffer, these experiments could be run using an
infinite RB. This would show which misses are compulsory and which are due to

“conflict” misses.
For purposes of being complete, the experiments we performed should be redone

using these last two methods to validate our claim that this behavior is common to

both the integer and floating--point benchmarks.

19

There is an area tradeoff between the Sv and Sn schemes: because the Sv scheme
saves the values of each operand instead of just the register name, it will take much
more area than the Sn scheme. For example, for a machine with only 2-operand
instructions, 32 32-bit registers, and a 1024 entry RB, the Sv scheme will use
32+32+22=86 bits per identifier. The Sn scheme will only take 5+5+22=32 bits per
identifier. Thus, for the same number of entries, the Sv RB will take approximately

2.6 times more area.

Because the Sn scheme behaves differently than the Sv scheme, a study could be

done to find the optimal RB configuration, based on the performance, area, and

speed tradeoffs of these methods.

20

Acknowledgements

We would like to thank Avinash Sodani for helpful discussions related to the project

and for assistance figuring out how to run the benchmarks.

Also, we thank Prof. Sohi for guiding our study and reminding us about the scope of

the project.

21

References

[1] Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reuse. Proceedings
of the 24th International Symposium on Computer Architecture, June 1997.

[2] Stuart F. Oberman and Michael J. Flynn. On Division and Reciprocal Caches.
Technical Report CSL-TR-95-666, Computer Systems Laboratory, Stanford
University, April 1995.

[3] D. Burger, T.M. Austin, and S. Bennett. Evaluating Future Microprocessors: The
SimpleScalar Tool Set. Technical Report CS-TR-961308, University of Wisconsin -
Madison. July 1996.

(URL: http://www.cs.wisc.edu/~mscalar/simplescalar.html)

22

