All-Points Shortest Path Problem
Zak Smith

0.0.1 Description of Problem

Given a directed graph, find the shortest path from each vertex to every other
vertex in the graph.

0.0.2 Relation to Dynamic Programming

Dynamic programming finds optimal solutions to problems by recursively figur-
ing out which sub—solution, combined with the choices at the current level, will
produce the best result.

For example, if we are solving problem A, which can be broken up and solved
4 ways aq, as, az, a4, we do the following:

1. figure out cost of ai,...,as: COST(a;)

2. pick best of a1, . . ., a4 by choosing the minimum of COM BIN E_COST (a;)+
COST(a;): the cost to combine a; at the current level plus the cost of a;
at the lower levels

3. we then return this solution and cost to the caller

Another feature of dynamic programming is the caching of solutions to sub—
problems. Once we find the best solution for a sub—solution, we can remember
this value and we need not recalculate it as we take other branches down the
recursion tree.

A simple example is if we are trying to calculate z! for x = 1,2,3,4,5. Once
we calculate 4!, for x = 4, we need not recalculate 4! when we find 5!, we can
simple use the value we already calculated.

Often these cached values are kept in a matrix, and often the dependencies
between entries have geometric significance (like in the matrix—multiply prob-
lem). In the example above (5!), an element on depends only on the element
directly to the left of it.

0.0.3 Solution to Problem

The input to this algorithm is a sparsely populated matrix M (¢, j), whose (i, 5)
element is the distance from vertex v; to vertex v;. The input matrix only
contains values for cities which are directly connected. As the algorithm runs,
it fills in the remainder of the entries.



M(i, j) = MIN{M (i, k) + M (k, j)}

... for all choices of k such that v; is connected to vg, ie: we pick the best sub—
solution for all the vertices directly connected to the current vertex, based on
the cost to combine that vertex vy with the current vertex v;. The “destination”
vertex is v;.

After M (1, ) is computed, the value is stored in the matrix position in M
so that subsequent queries do not have to recompute M (i, 7).

I have just described how to find a singular shortest-path. To find all the
shortest—paths, we merely look up the next (7, j) pair using the same matrix.
As more and more paths are known, we quickly build a “library” of cached
sub—solutions so instead of lots of computation, we merely look up the answers
to the sub—solutions in our matrix. M(i,j) is called with all possible vertex
pairs, n?. The first computed pairs take generally longer to compute, and the
later pairs take generally less time to compute because of the already—computed
values in the matrix.

0.0.4 Comments

This algorithm does not fill the matrix in a geometric order because the graph is,
by nature, not geometrically regular. Nevertheless, this algorithm does use the
ideas of Dynamic Programming to find the best solution in the least ammount
of time.

An alternative algorithm would be to start at each vertex, 1...n, and find
the shortest path to each other vertex, using a method similar to the one speci-
fied above. Thus, when starting at the first vertex, we would visit n — 1 vertices.
At the end, we would only need to go to one other vertex. At the first vertex, it
must visit O(n?) nodes, so it is equivalent in complexity to the solution I have
proposed above.



