RRISC Architecture Report

Zak Smith Jeffry Lucman Jeremy Petsinger
John Liu Mostafa Arifin

December 12, 1997

Contents

1 Executive Summary 2
2 Introduction 4
2.1 Purpose 5
2.2 Background 5
2.3 Organization 5
2.4 Additional Reading L 5

3 Design Spec 6
3.1 Overall Architecture 7
3.2 Word Size 7
3.3 Memories 7
3.4 General Purpose Registers 7
3.5 Special Registers Lo 7
3.6 Scheduling 8
3.7 Physical Constraintso 8

4 Implementation Details 9
4.1 Major Functional Blocks 10
411 Dispatch.o 10

4.1.2 Master ALUPipe 10

4.1.3 Slave ALUPipe 10

414 Memory Pipeo 10

4.1.5 RegisterFile o L. 10

4.2 Dataflow 11
4.3 Control e 11
4.4 Collision Detection 11

5 Results & Conclusions 12
5.1 Limitations of RRZSC 13
5.2 Epilogue 14

CONTENTS

A Instruction Set

A.1 Operation Types and Instruction Word Formats
A.2 Notational Conventions
A3 Common ALU Operations
A.4 Memory Access Operations
A5 I/OOperations
A.6 Special Register Operations
A.7 Jump and Branch Operations
A.8 Miscellaneous Operations

Examples
B.1 Function Call
B.2 Arithmetic Example,

Individual Contributions

C.1 Zachary Smith
C.2 Mostafa Arifin
C3 JohnLiu. e
Cd Jeffry Lucman Lo
C.5 Jeremy Petsinger o
C.6 Accomplishment Matrix

Chapter 1

Executive Summary

CHAPTER 1. EXECUTIVE SUMMARY 4

During the Fall semester of 1996, the RRZSC team designed, debugged, and
built a “non—trivial computer with an original instruction set,” as specified in
the project requirements for ECE554 at the University of Wisconsin — Madison.

After specification and design, the computer was implemented in hardware
using Xilinx XC4000 series FPGAs, with support circuitry on the WICEPS
board supplied for the course.

The main feature of our computer was that it was super—scalar; it could
execute up to 3 instructions simultaneously. To conserve limited resources, we
limited our instruction word length to 13 bits, and our data word length to 8
bits. The computer had 8k words of instruction memory and 16k words of data
memory.

The system was composed of 4 main modules. The dispatch unit handled
scheduling of instructions for execution. The AIO, ALU, and MEM units were
each 3—stage pipelines mostly independent of each other which executed subsets
of the instruction set. These execution units operated in parallel.

The instruction set was based on standard reduced instruction set ideas
(RISC), with the exception of a few special instructions to make memory ad-
dress calculations easier, which would have been difficult since our data and
instruction word lengths differed.

The project was a success: once in hardware and debugged, the system ran
at 4.09 MHz, a period of 209ns.

Although ECE554 has one of the highest workloads of any undergraduate
ECE class, it is one of the most worthwhile and most satisfying. We all gained
existential joy when our programs ran on the computer we had designed and
built.

Chapter 2

Introduction

CHAPTER 2. INTRODUCTION 6

2.1 Purpose

The mission of UW-Madison’s ECE554 students is to
Design a non—trivial computer with an original instruction set.

This document describes the computer built by the RRZSC team which
consisted of: team leader Zak Smith, Jeffry Lucman, Jeremy Petsinger, John
Liu, and Mostafa Arifin.

2.2 Background

All of the students in the class have taken ECE552, the introductory computer
architecture class, in which they designed a simple CPU in a sterile simulation—
only environment. In ECE554, however, the teams also physically build the
systems, taking into account real-world limitations of the equipment available
and engineering decisions about the tradeoffs.

In addition, the group must learn how to work successfully in a group. This
often is overlooked, but it can mean the difference between success and failure.

2.3 Organization

Following this introduction is the “Design Spec” section, which describes general
architecture and specification, and then the “Implementation Details” section
explains each block’s design. Finally, the “Results & Conclusions” chapter dis-
cusses limitations and choices we would change if we had to do it over again. The
appendices contain the Instruction Set Architecture specification and a matrix
describing each member’s contributions.

2.4 Additional Reading

Readers not familiar with basic comptuer architecture issues should refer to
Computer Organization & Design: The Hardware / Software Interface, by Pat-
terson and Hennessy.

Technical specifications of the hardware provided for class use are available
in the ECE 554 class notes.

Chapter 3

Design Spec

CHAPTER 3. DESIGN SPEC 8

3.1 Overall Architecture

We have developed a superscalar architecture, and have named it RRZSC : the
Radically Reduced Implementation of a Superscalar Computer.

Superscalar means there are multiple pipelines to which instructions are
issued simultaneously. There are two ALU pipes and one memory access pipe.
Data hazards must be detected by the compiler (or assembly programmer) and
NOP’s must be inserted into the instruction stream. There are similar restrictions
for branch instructions.

3.2 Word Size

The RRISC uses 8-bit data words and has 13-bit instruction words. (These
“odd” numbers were chosen because the FPGA’s have limited routing and pin
resources, and increasing either number would make our overall architecture
untractable.)

3.3 Memories

The RRZISC has disjoint instruction and data memories, which are addressed
using 14-bit and 13-bit addresses, respectively. There are 8192 words of data
memory, and 16384 words of instruction memory in two 8192 word parallel
banks. The two instruction memory banks each use the upper 13 bits of the
instruction address. The last bit is used to discriminate between the two in-
structions inside the processor.

3.4 General Purpose Registers

The RRZSC has 8 general purpose registers $0 ... $7. Reads from $0 always
return 0x00 and writes to $0 have no effect. The other registers, $1 ... $7 are
normal registers.

3.5 Special Registers

The RRISC has several special purpose registers. The first is the obvious
PC, the program counter. The programmer modifies this value with the jump
and branch instructions. Since the registers are only 8 bits, we needed several
special registers to hold 14 and 13-bit addresses. The SP is a stack pointer
which supports several push and pop type instructions. The AR acts as a general
address register, which is used for link addresses, absolute jumps, and load and
store word instructions. The PC, AR, and SP are 14-bit registers.

Branching is done based on the SET bit, which is a single bit register holding
the result of the last test instruction executed. All instructions which use the

CHAPTER 3. DESIGN SPEC 9

ALU, with the exception of AND and OR, set the CY carryout bit, which can be
used to do arithmetic beyond 8 bits.

3.6 Scheduling

NOP’s in the instruction stream act as barriers between sets of dependent in-
structions. All instructions before a NOP will be issued before the NOP is issued.
NOP’s are issued in order to all pipes simultaneously — that is, when a NOP is the
next instruction in the dispatch stream, all three pipelines will received a NOP
signal simultaneously. The easiest programming paradigm, given this structure,
is to write code in clusters of orthogonal instructions, and separate those clus-
ters each by a single NOP. The only restriction for jumps and branches is that
the instruction immediately following a branch must not be a jump or a branch.

The guidelines for avoiding data hazards are as follows: dependent register
instructions must be seperated by one NOP, or enough other instructions to keep
the pipes busy for 2 cycles. After AR has been popped from the stack, one NOP
or other instruction to keep the memory pipe busy is required before another
instruction which requires AR, like ret or jf.

3.7 Physical Constraints

The system was implemented in an array of 6 Xilinx XC4000 FPGAs which
reside on the WICEPS board supplied by the instructors for the course. Each
FPGA has 142 = 192 configurable logic blocks. Each CLB contains 2 flip—flops,
and the capability for arbitrary logic functions based on two 4x1 bit RAMs and
one 3x1 RAM fed by the two four 4x1’s with an additional input.

Each FPGA chip has 107 usable pins, which contrains how the design can be
distributed between the chips. This also limits the word length and the width
of busses which must pass between chips. Each FPGA also has limited internal
routing capability, so care must be taken to minimize the number of internal
signals.

Chapter 4

Implementation Details

10

CHAPTER 4. IMPLEMENTATION DETAILS 11

This chapter provides an overview of the system on a functional-block level.
Details of individual functional blocks are described in the next chapter.

4.1 Major Functional Blocks

The system was developed in five main functional blocks: dispatch, master
ALU pipe, slave ALU pipe, memory pipe, and register file. Each functional unit
resided in a single FPGA. This division was chosen mainly in order to not run
out of pin resources.

4.1.1 Dispatch

The dispatch unit is responsible for issuing instructions to each of the execution
pipes. The dispatch reads two instructions in parallel from instruction memory,
and provides the instruction and instruction—enable signals to each execution
pipe by the next clock edge. Instruction stalls can only occur in the dispatch
unit, and they occur when either of the instructions are destined for the same
execution pipe or a jump or branch is propagating down the memory pipe.

4.1.2 Master ALU Pipe

The master ALU executes ALU and IO instructions and keeps track of the ALU
special registers SET and CY. The master ALU FPGA also contains the TIS.!

4.1.3 Slave ALU Pipe

The slave ALU executes only ALU instructions, and communicates changes in
the SET and CY registers to the master ALU.

4.1.4 Memory Pipe

The memory pipe executes all other instructions, which includes those instruc-
tions with modify the address register AR, the stack pointer SP, and the program
counter PC.

4.1.5 Register File

The register file is an eight by 8-bit register file implemented in D flip—flops.
The register file is clocked on the negative edge of the system clock in order to
allow read—after—write. Reads from register $0 always return 0x00 and writes
to $0 have no effect.

!Terminal Interface System developed as miniproject 2

CHAPTER 4. IMPLEMENTATION DETAILS 12

4.2 Dataflow

Instruction words move from the instruction memory to the dispatch. The
dispatch issues instructions to the three execution pipelines, which when take
between one and three cycles to complete execution. Instructions do not move
between execution units as they are being executed.

4.3 Control

There are several block-level control signals which are used to manage state
and status changes between the units. When the dispatch unit stalls, it asserts
NOFETCH which causes the memory unit not to write the incremented PC on
the next clock edge. If the dispatch unit stalls because a jump or branch in-
struction has been issued, it does not continue until it receives PCC from the
memory pipe, which means that the jump or branch instruction has finished
executing and the data from instruction memory is now the new, correct in-
struction. The memory pipe will assert CONT if a branch was issued, and it
has executed but the branch has not been taken. This will cause the dispatch
to issue the “delayed” instruction when the branch was located on the even
address. The instruction immediately following a branch on an odd address
cannot be a jump or a branch because it violates the stipulation that only one
PC-modifying instruction will be in the dispatch at any one time.

The dispatch sends a “NOP” flag to each execution pipeline which invalidates
the instruction word going to that pipe. When NOP is active for a certain pipe,
the instruction word is disregarded, and no action is taken.

4.4 Collision Detection

Although data dependencies must be handled by an intelligent assembler, com-
piler, or programmer,? the hardware will raise the TRAP signal and halt the PC
when two or more instructions try to write to the same register at once. Checks
are made for SET, CY, and $1 ... $7.

The TRAP signal is wired to an LED on the WICEPS board to alert the
programmer to his error. We have found this also useful for halting a program
during debug.

2This proved more difficult than one would think.

Chapter 5

Results & Conclusions

13

CHAPTER 5. RESULTS & CONCLUSIONS 14

5.1 Limitations of RRZSC

The largest limitation is the fact that we use only 13-bit instructions. This
limits us in many ways. First, our jump addresses are only eight bits, which
means that for any jumps farther than +/- 128 instructions, which is most of
the time, we must first reference a pointer table, load the AR, then jump far,
which is very time consuming.

The second major limitation is the fact that we only have 8 registers. In the
ideal case, our superscalar machine executes 2 instructions per clock cycle, which
means for normal arithmetic operations, we run out of registers very quickly.

The third limitation is largely a function of time. With more time or more
people in the group, we could have built a smart compiler that converted high
level code into optimized RRZSC code. This would mean it issues do—nothing
instructions to some of the pipes while keeping the other pipes running. This
would avoid the use of nops to solve potential data dependencies.

The empirical maximum clock frequency was found to be 4.9 MHz, 204ns.
We think that this limit was either inside the Dispatch unit, which had long FF
to FF delays, or that is was due to the register file write, which had to happen
during the PHI1 clock. The delay for a register write is approximately F/F to
PADS + worst PADS to F/F:

20 + 63 = 83ns

This period should be within active high clock period because the data will
be written on the negative PHI1 clock edge, and becomes active after the positive
edge of PHI1. This yields a theoretical maximum clock period of 100/25%83ns =
332ns, which is a frequency of 3.01 MHz.

CHAPTER 5. RESULTS & CONCLUSIONS 15

5.2 Epilogue

After completion of the RRZSC microprocessor, the team will disband and
return to their old lifestyles. John will begin his job at intel in January, citing
the fact that he likes working a lot as his main job selection criteria. Mostafa
will begin graduate school in January, and is considering retaking 554 because
he likes Mentor so much. Jeffry will continue his undergraduate studies.

Zak will graduate in May, work the summer in crazy California, and come
back for more punishment as a graduate student in the Fall of 1997. Asked
about his future plans, Jeremy responded “I’'m kind of tired, I think I might go
to bed.”

Appendix A

Instruction Set

16

APPENDIX A. INSTRUCTION SET 17

A.1 Operation Types and Instruction Word For-

mats

There are six defined instruction types, to facilitate the opcode and immediate
fields. All instructions start with a 4-bit opcode.

Type
R-Type
M-Type
S-Type
O-Type
N-Type

J-Type

—N——
Opcode Op Ext Imm
4 1 8

—N——
Opcode Op Ext Imm

Used for

add sub and or addc not

Irl 1w sw larl

slt seq

iotr iora iot ior laru sll srl sra pushr popr
pushl pushh popl poph sptar ret nop artsp

bs bns jn jf jaln jalf

A.2 Notational Conventions

For purposes of operation specification, the following notation has been defined:

Notation
RD

R1

R2
A+ B
A< B
AlB
A& B
A||B
S A
0r
RD7,
——A
A+ +
M[A]

Meaning

Register addressed by rd
Register addressed by r1
Register addressed by r2
Value in B is copied into A

B is exchanged with A

A bitwise catenated with B
A occurs if and only if B occurs
A occurs in parallel with B

Sign—extend A

Pad with 0’s

Pad with RD’s MSB
Pre—decrement A
Post—increment A

Data Memory location A

Note that the special registers are denoted CY, PC, SP, and AR. Memory is
denoted with M[location], and registers specified in the instruction are denoted
RD, R1, and R2.

APPENDIX A. INSTRUCTION SET 18

A.3 Common ALU Operations

Opcode Type Pipe Description

add R ALU RD < R1 +R2

sub R ALU RD < R1 —R2

and R ALU RD < R1 AR2

or R ALU RD < R1VR2

addc R ALU RD + R1+R2+CY

not R ALU RD < —R1

s11 O ALU RD+ (RD < Imms)|0,
srl 0 ALU RD < 0,,|(RD > Immj)
sra O ALU RD < RD7, |(RD >> Immg)

A.4 Memory Access Operations

Opcode Type Pipe Description

1w M MEM RD ¢ M[AR + Immg]

sW M MEM M[AR + Immg] < RD
pushr O MEM M[SP+ 4]+ R1

popr O MEM R1 ¢+ M[— — SP]
pushl N MEM M[SP + +] + ARz,
pushh N MEM M[SP + +] < 02|AR;3.8
popl N MEM AR7.9 + M[— — SP]
poph N MEM ARq3.8 M[— — SP]

A.5 1I/0O Operations

Opcode Type Pipe Description
iotr O AIO RD « 07|TBR
iora O AIO RD « 07|RDA
iot O AIO XMIT + RD
ior O AIO RD + RECV

A.6 Special Register Operations

Opcode Type Pipe Description
laru 0 MEM ARj3.8 < RDs.0
larl1 M MEM AR7.o < RD
sptar N MEM AR < SP
artsp N MEM SP < AR

APPENDIX A. INSTRUCTION SET 19

A.7 Jump and Branch Operations

Opcode Type Pipe

slt
seq
jn
jf
jaln
jalf
bs

bns
ret

Z e N N e W

ALU
ALU

MEM
MEM

MEM
MEM

MEM

MEM
MEM

Description

SET « (R1 < R2)

SET « (R1 ==R2)

PC ¢ PC+ s Tmmg

PC « AR

AR < PC || PC + PC+ s Immg
AR <> PC

(PC « PC+ ‘s Immg) < SET
(PC « PC+ s Immg) < —SET
PC « AR

A.8 Miscellaneous Operations

Opcode Type Pipe
1rl M MEM

lru O
nop N

ALU

Description
RDs.0 < Immg
RD7.¢ <~ Immy
bubble

Appendix B

Examples

We designed the instruction set with simplicity and utility in mind. Here are a
few examples of how to utilize the instruction set to do common tasks.

B.1 Function Call

This illustrates how a function called by JALN or JALF would save the return
address and any registers onto the stack.

function:
pushl ; push AR(7:0) onto stack
pushh ; push AR(13:8) onto stack
pushr $1 ; save any registers we clobber
pushr $2 ;
pushr $3 ;

; function code goes here
popr $3 ; restore the registers we saved
popr $2 ;
popr $1 ;
poph ; restore AR(13:8)
popl ; restore AR(7:0)
ret ; return to AR

B.2 Arithmetic Example
1rl $1 0x06 ; $1 = 06H

20

APPENDIX B. EXAMPLES

nop
add $2 $1 $0
sub $3 $0 $1
nop

not $4 $1
s11l $2 0x01
nop

and $5 $1 $2
or $6 $1 $2
srl $4 0x01
sra $2 0x03

3

3

)

$2
$3

$4 =

$2

$5
$6

; $4
; $2

06H
FAH

FOH
OCH

04H
OEH
7CH
01H

21

Appendix C

Individual Contributions

22

APPENDIX C. INDIVIDUAL CONTRIBUTIONS 23

C.1 Zachary Smith

As group leader Zak was involved in nearly every phase of RRZSC developo-
ment. He was heavily involved in developing the architecture and instrucion set
including rough block descriptions of all major system components and he de-
fined the functions of each pipeline stage. He designed, entered, and debugged
the dispatch unit, and wrote the Life program for the demonstration.

C.2 Mostafa Arifin

Mostafa was primarily responsible for the design and testing of the two ALU
pipes, and interfacing these units with the TIS. He was also heavily involved
in Register File development, and assisted Mr. Lucman in many hardware
and wirewrapping related activites. He also wrote the menu screen for the
demonstration.

C.3 John Liu

John was involved in the original definition of the architecture and instruction
set. He also wrote the original MAD, and the subsequent 10 revisions. MAD
made code generation fast and easy.

C.4 Jeffry Lucman

Jeffry contributed in many areas of RRZSC development including Register
File design and testing, hardware tests on all FPGAs and memory modules,
and several smaller components found in the ALU and Memory Pipes. Perhaps
his most appreciated accomplishment was the error—ree wirewrapping of the
entire board. Jeffry also wrote the Sort program in optimized DELA code for
the demonstration.

C.5 Jeremy Petsinger

Jeremy was heavily involved in the development of the instruction set and defini-
tion of the RRZSC Architecture. Additionally, Jeremy designed and tested the
Memory Pipe, and wrote matrix routines in DELA code, which demonstrated
realistic throughputs on RRZSC optimized code.

APPENDIX C. INDIVIDUAL CONTRIBUTIONS

C.6 Accomplishment Matrix

Task

Gimmick
Organization Block
Instruction Set
Final Organization
Pipe Functions
POO

Dispatch
Design
Entry
Simulation

Regfile
Design
Entry
Simulation

Memory Interface

ATO Pipe
Design
Entry
Simulation

ALU Pipe
Design
Entry
Simulation

Memory Pipe
Design
Entry
Simulation

System Simulation
HardWare Debug
Software Tools
Software Development
Dela

FPGA Pin Test
Memory Test
Path Delays
Compute Stats
WireWrap

MAD

Zak

20%
35%
34%
100%
50%
100%

100%
100%
100%

Jeremy

20%
35%
34%

50%

Mostafa

20%
10%
™%

20%
20%

12%

40%

30%

Jeffrey

20%
10%
™%

5%

21%
20%

27%
100%
60%
100%
100%
50%
70%

John

20%
10%
18%

15%
20%
10%

100%

24

