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Abstract

The mission of UW-Madison’s ECE 554 students is to Design a non—trivial
computer with an original instruction set. This document describes the super-
scalar architecture developed by the RRZSC team and how it was implemented
in Xilinx XC4000 FPGAs using the WICEPS prototype board.
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Chapter 1

Instruction Set
Architecture



1.1 Overview

This chapter describes the instruction set architecture (ISA) of the RRZSC sys-
tem developed during Fall 1996.! The RRZSC is a super-scalar architecture:
there are multiple pipelines to which instructions are issued simultaneously.
There are two ALU pipes and one memory access pipe. Data hazards must
be detected by the compiler (or assembly programmer) and NOP’s must be in-
serted into the instruction stream. There are similar restrictions for branch
instructions. The specific numbers of NOP’s required for each instruction will
be determined by the hardware implementation, and are not detailed in this
chapter.

1.2 Architecture

1.2.1 Word Size

The RRZSC uses 8-bit data words and has 13-bit instruction words. (These
“odd” numbers were chosen because the FPGA’s have limited routing and pin
resources, and increasing either number would make our overall architecture
untractable.)

1.2.2 Memories

The RRZSC has disjoint instruction and data memories, which are addressed
using 14-bit and 13-bit addresses, respectively. There are 8192 words of data
memory, and 16384 words of instruction memory in two 8192 word parallel
banks. The two instruction memory banks each use the upper 13 bits of the
instruction address. The last bit is used to discriminate between the two in-
structions inside the processor.

1.2.3 General Purpose Registers

The RRZSC has 8 general purpose registers $0 ... $7. Reads from $0 always
return 0x00 and writes to $0 have no effect. The other registers, $1 ... $7 are
normal registers.

1.2.4 Special Registers

The RRZSC has several special purpose registers. The first is the obvious
PC, the program counter. The programmer modifies this value with the jump
and branch instructions. Since the registers are only 8 bits, we needed several
special registers to hold 14 and 13-bit addresses. The SP is a stack pointer
which supports several push and pop type instructions. The AR acts as a general

IRRISC is an acronym for “Radically Reduced Implementation of a Superscalar
Computer”



address register, which is used for link addresses, absolute jumps, and load and
store word instructions. The PC, AR, and SP are 14-bit registers.

Branching is done based on the SET bit, which is a single bit register holding
the result of the last test instruction executed. All instructions which use the
ALU, with the exception of AND and OR, set the CY carryout bit, which can be
used to do arithmetic beyond 8 bits.

1.2.5 Scheduling

NOP’s in the instruction stream act as barriers between sets of dependent in-
structions. All instructions before a NOP will be issued before the NOP is issued.
NOP’s are issued in order to all pipes simultaneously — that is, when a NOP is the
next instruction in the dispatch stream, all three pipelines will received a NOP
signal simultaneously. The easiest programming paradigm, given this structure,
is to write code in clusters of orthogonal instructions, and separate those clus-
ters each by a single NOP. The only restriction for jumps and branches is that
the instruction immediately following a branch must not be a jump or a branch.

The guidelines for avoiding data hazards are as follows: dependent register
instructions must be seperated by one NOP, or enough other instructions to keep
the pipes busy for 2 cycles. After AR has been popped from the stack, one NOP
or other instruction to keep the memory pipe busy is required before another
instruction which requires AR, like ret or jf.

1.3 Instruction Set

1.3.1 Operation Types and Instruction Word Formats

There are six defined instruction types, to facilitate the opcode and immediate
fields. All instructions start with a 4-bit opcode.

Type Layout Used for
4 3 3 3

R-Type Opcode rd r1 r2 add sub and or addc not
4 3 6

—N— AN
M-Type Opcode rd Imm 1rl 1w sw larl
4 3 3 3

S-Type OpcodeOp Ext r1 r2 slt seq
4 3 3 3

O-Type OpcodeOp Ext r1 Imm iotr iora iot ior laru sll srl sra pushr popr
4 3 6

— NN
N-Type  Opcode Op Ext Imm pushl pushh popl poph sptar ret nop artsp
4 1 8

—N AN
J-Type Opcode Op Ext Imm bs bns jn jf jaln jalf



1.3.2 Notational Conventions

For purposes of operation specification, the following notation has been defined:

Notation Meaning

RD Register addressed by rd
R1 Register addressed by r1
R2 Register addressed by r2
A« B Value in B is copied into A
A+« B B is exchanged with A
A|B A bitwise catenated with B
A< B A occurs if and only if B occurs
A||B A occurs in parallel with B
S A Sign—extend A

0n Pad with 0’s

RD7, Pad with RD’s MSB

——A Pre-decrement A

A++ Post—-increment A

M[A] Data Memory location A

Note that the special registers are denoted CY, PC, SP, and AR. Memory is
denoted with M[location], and registers specified in the instruction are denoted
RD, R1, and R2.

1.3.3 Common ALU Operations
Opcode Type Pipe Description

add R ALU RD < R1 +R2

sub R ALU RD < R1 —R2

and R ALU RD <+ R1 AR2

or R ALU RD <+ R1VR2

addc R ALU RD < R1+R2 +CY

not R ALU RD < —R1

s11 O ALU  RD ¢ (RD < Imms)|0,
srl O ALU RD « 0,|(RD > Immg)
sra O ALU RD < RD;, |(RD >> Immg)

1.3.4 Memory Access Operations

Opcode Type Pipe Description

1w M MEM  RD ¢« M[AR + Immg]
sW M MEM  M[AR + Immg] < RD
pushr O MEM M[SP + +] +~— R1
popr O MEM  R1+ M[— — SP]
pushl N MEM  M[SP + +] + ARz,



pushh N
popl N
poph N

MEM
MEM
MEM

M[SP + +] < 02|AR13:3
AR7.g M[— — SP]
ARj3.8 M[— — SP]

1.3.5 I/O Operations
Opcode Type Pipe

iotr O
iora O
iot 0
ior 0

AIO
AIO
AIO
AIO

Description
RD « 07|TBR
RD «+ 07|RDA
XMIT < RD
RD + RECV

1.3.6 Special Register Operations

Opcode Type Pipe

laru O
larl1 M
sptar N
artsp N

MEM
MEM
MEM
MEM

Description
AR;3.3 < RDs.0
AR7.9 <~ RD
AR < SP

SP < AR

1.3.7 Jump and Branch Operations

Opcode Type Pipe

slt
seq
jn
jf
jaln
jalf
bs

bns

Z e N Wy e W

ret

ALU
ALU

MEM
MEM

MEM
MEM

MEM

MEM
MEM

Description

SET + (R1 < R2)

SET «+ (R1 ==R2)

PC ¢ PC+ S Immg

PC « AR

AR < PC || PC+ PC+ s Immg
AR <> PC

(PC « PC+ ‘s Immg) < SET
(PC « PC+ s Immg) < —SET
PC « AR

1.3.8 Miscellaneous Operations

Opcode Type Pipe

1rl M
lru 0
nop N

MEM
ALU

Description
RD5.0 + Immg
RD7.¢ < Immo
bubble



1.4 Examples

We designed the instruction set with simplicity and utility in mind. Here are a
few examples of how to utilize the instruction set to do common tasks.

1.4.1 Function Call

This illustrates how a function called by JALN or JALF would save the return
address and any registers onto the stack.

function:
pushl
pushh
pushr $1
pushr $2
pushr $3

popr $3
popr $2
popr $1
poph
popl
ret

; push AR(7:0) onto stack
; push AR(13:8) onto stack
; save any registers we clobber

; function code goes here

; restore the registers we saved

; restore AR(13:8)
; restore AR(7:0)
; return to AR

1.4.2 Arithmetic Example

1rl $1 0x06
nop

add $2 $1 $0
sub $3 $0 $1
nop

not $4 $1
s11l $2 0x01
nop

and $5 $1 $2
or $6 $1 $2
srl $4 0x01
sra $2 0x03

; $1 = O6H
; $2 = O06H
; $3 = FAH
; $4 = F9H
; $2 = OCH
; $5 = 04H
; $6 = OEH
; $4 = TCH
; $2 = 01H
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Machine Architecture
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This chapter provides an overview of the system on a functional-block level.
Details of individual functional blocks are described in the next chapter.

2.1 Major Functional Blocks

The system was developed in five main functional blocks: dispatch, master
ALU pipe, slave ALU pipe, memory pipe, and register file. Each functional unit
resided in a single FPGA. This division was chosen mainly in order to not run
out of pin resources.

2.1.1 Dispatch

The dispatch unit is responsible for issuing instructions to each of the execution
pipes. The dispatch reads two instructions in parallel from instruction memory,
and provides the instruction and instruction-enable signals to each execution
pipe by the next clock edge. Instruction stalls can only occur in the dispatch
unit, and they occur when either the instructions are destined for the same
execution pipe or a jump or branch is propagating down the memory pipe.

2.1.2 Master ALU Pipe

The master ALU executes ALU and IO instructions and keeps track of the ALU
special registers SET and CY. The master ALU FPGA also contains the TIS.!

2.1.3 Slave ALU Pipe

The slave ALU executes only ALU instructions, and communicates changes in
the SET and CY registers to the master ALU.

2.1.4 Memory Pipe

The memory pipe executes all other instructions, which includes those instruc-
tions with modify the address register AR, the stack pointer SP, and the program
counter PC.

2.1.5 Register File

The register file is an eight by 8-bit register file implemented in D flip—flops.
The register file is clocked on the negative edge of the system clock in order to
allow read—after—write. Reads from register $0 always return 0x00 and writes
to $0 have no effect.

!Terminal Interface System developed as miniproject 2
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2.2 Dataflow

Instruction words move from the instruction memory to the dispatch. The
dispatch issues instructions to the three execution pipelines, which when take
between one and three cycles to complete execution. Instructions do not move
between execution units as they are being executed.

2.3 Control

There are several block-level control signals which are used to manage state
and status changes between the units. When the dispatch unit stalls, it asserts
NOFETCH which causes the memory unit not to write the incremented PC on
the next clock edge. If the dispatch unit stalls because a jump or branch in-
struction has been issued, it does not continue until it receives PCC from the
memory pipe, which means that the jump or branch instruction has finished
executing and the data from instruction memory is now the new, correct in-
struction. The memory pipe will assert CONT if a branch was issued, and it
has executed but the branch has not been taken. This will cause the dispatch
to issue the “delayed” instruction when the branch was located on the even
address. The instruction immediately following a branch on an odd address
cannot be a jump or a branch because it violates the stipulation that only one
PC-modifying instruction will be in the dispatch at any one time.

The dispatch sends a “NOP” flag to each execution pipeline which invalidates
the instruction word going to that pipe. When NOP is active for a certain pipe,
the instruction word is disregarded, and no action is taken.

2.4 Collision Detection

Although data dependencies must be handled by an intelligent assembler, com-
piler, or programmer, the hardware will raise the TRAP signal and halt the PC
when two or more instructions try to write to the same register at once. Checks
are made for SET, CY, and $1 ...$7.

The TRAP signal is wired to an LED on the WICEPS board to alert the
programmer to his error. We have found this also useful for halting a program
during debug.

12
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Memory Subsystem
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The RRISC uses seperate Instruction and Data Memory modules.

3.1 Instruction Memory

The Instruction Memory consists of 16K of 13-bit instructions using two 8K X
16-bit memories where bits 15-13 are don’t care. The first memory contains
even memory address instructions and the second memory contains odd mem-
ory address instructions. In order to load the instruction memory, a memory
separator program divides a continuous instruction stream into even and odd
addresses. On each memory read, the upper 13 bits of the Program Counter,
PCy3.1, are provided as the memory address, from the Memory Pipe, and two
instructions are issued to the Dispatch Unit in parallel.

There is no facility to write to instruction memory, so WR_BAR is tied high,
and the chip output is always enabled.

3.2 Data Memory

The Data Memory consists of 8K 8-bit data words and interacts solely with the
Memory Pipe. Data Memory uses one 8K X 16-bit memory module where the
bits 15-8 are don’t cares. The memory address is determined by AR;5.9 or SP15.9
from the Memory Pipe. The 8-bit data, on a bidirectional data bus from the
Memory Pipe is read on WR_Enable bar high and written on WR_Enable_bar
low. In order to ensure a stable data address, PHI2 BAR clock signal is used
to access memaory.

14
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Dispatch Subsystem Design
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4.1 Overview

4.1.1 Introduction

The dispatch unit is responsible for the flow of instructions from instruction
memory to the three execution units.

4.1.2 Registers

The dispatch contains two registers for the instruction words coming from in-
struction memory, and an “extra” instruction register which is used to hold
the left over instruction in the case of a stall. The two instructions have been
named M1 and MO, for the odd and even memory locations, and the “extra”
buffer stage has been called BO. The dispatch also contains a “PC” register,
which holds the upper 13 bits of the PC valid for the instructions coming from
memory. The lower bit is held in its own 1-bit register controlled by logic to
give the correct even or odd value when the instruction is issued.

4.1.3 Stalls

Stalls occur in two cases: the first is when there will be more than one in-
struction left, which means that at least two instructions are persisting in the
dispatch for the next clock. In this case, there is not enough room for the two
new instructions from memory, so the dispatch stalls until at least one of the
remaining instructions clears. The other case in which a stall occurs is when
a PC—modifying instruction is issued. If this happens, the “WAITING” flag,
implemented in a J/K flip—flop, is set. It is not reset until the memory pipe
reports that the PC-modifying instruction has cleared and the new instructions
from memory are valid.

4.1.4 Instruction Types

There are three main instruction classes: pure ALU, named simply ALU; ALU/IO
instructions, named AIQ; and memory pipe operations, named MEM. For the
non—overlapping instruction sets (ALU/AIO vs. MEM), the information must
travel from B0 to M1. Overlapping set information (AIO vs. ALU) must travel
from M1 to BO. The logic block used for each buffer stage control is the same:
the multiple blocks are daisy—chained together, with the endpoints appropriately
set to logic 0.

4.2 Fundamental State

The logic for the dispatch is built upon a base of fundamental state signals.
These fundamental signals are generated for each buffer stage. In the table i is
the stage we are at, M1, MO, or B0.

16



Name Description

PCM PC—modifying instruction

NOP iis a NOP

ALU iis ALU or AIO op.

TIS iis an IO op.

B i Blocks: NOP or PCM

rB Blocking instruction at i or before
MEM iis a MEM pipe op.

iTIS iis TIS and not blocked

fTIS A TIS instruction exists at i or after.

iMEM iis the first MEM and not blocked
rMEM IMEM exists at i or before

iNOP i is the next op in the queue
rNOP iNOP exists at i or before

iAIO iis the first AIO and not blocked
rAIO iAIO exists at i or before

iALU i is allocated to the ALU pipe
rALU iALU exists at i or before

VNI iis valid (enabled) and not issued

ISSUED iis issued on this clock

4.3 Control

The fundamental signals from each buffer stage are combined to form seven
busses: PCM(2:0), iNOP(2:0), iALU(2:0), iAIO(2:0), iMEM(2:0), VNI(2:0),
and ISSUED(2:0). Bit 0 of each corresponds to the BO buffer stage, bit 1
corresonds to the MO buffer stange, and bit 2 corresponds to the M1 buffer
stage. These signals are used throughout the dispatch as control signals.

The only system-level control interaction the dispatch has is with the mem-
ory pipe. The following signals are used for flow control:

Name Description
NOFETCH DSP tells MEM to not write the incremented PC: stall
PCC MEM tells DSP that fetching can continue

CONT MEM tells DSP that the branch was not taken

When there is no instruction allocated to a pipe, the NOP flag for that pipe
is set to logic 1, disabling the don’t—care instruction as it propagates down the

pipe.

4.4 Logic Development

The logic used in the dispatch unit was firt prototyped in C++. Here is the
code engine which demonstrates the logic.

17



buffer.h

#ifndef BUFFER_H
#define BUFFER_H

#include "types.h"
#include "bufnode.h"

#define M1 2
#define MO 1
#define BO O

#define NUMSTAGE (M1+1)

class BUFFER
{
public:

BUFFER ();
~“BUFFER ();

void Set (int i, ITYPE i);
void Show (void);

int iSum (int n);
int rSum (int n);

bool iALU (int n);
bool rALU (int n); /* -r does include the current node */

bool iTIS (int n);
bool £fTIS (int n);

bool iNOP (int n);
bool rNOP (int n);

bool iAID (int n);
bool rAIO (int n);

bool iMEM (int n);
bool rMEM (int n);
BUFNODE *x*buf;

private:
bool rBLOCK (int n);
};

18



#endif

buffer.cc

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#include "buffer.h"
/* ALU is a subset of SIO */

void BUFFER::Set (int i, ITYPE p)
{

xbuf [i] = p;
}

void BUFFER: :Show (void)
{
int i;
for (i = NUMSTAGE - 1; i >= 0; i--)
{
buf [i]1->Show ();
printf (" ");
}
printf ("\n");
}

BUFFER: :BUFFER ()
{
buf = new (BUFNODE ) [NUMSTAGE] ;
buf [0] = new BUFNODE ("BO");
buf [1] new BUFNODE ("MO");
buf [2] new BUFNODE ("M1");

¥

BUFFER: : "BUFFER ()
{
delete buf[2];
delete buf[1];
delete buf[0];
delete[]buf;

19



int BUFFER::iSum (int n)
{
}

int BUFFER::rSum (int n)
{
}

bool BUFFER::rBLOCK (int n) /* blocked at or before n 7 */
{
if (n < 0)
return 0O;
else if (buf[n]->Blocking () && buf[n]->Enabled ())
return true;
else
return rBLOCK (n - 1);

bool BUFFER::iTIS (int n)

{
return
'TBLOCK (n - 1)
&&
buf [n]->Enabled ()
&&
(buf [n]->Type () == TIS)
}

bool BUFFER::fTIS (int n) /* is there a TIS op. at or beyond n 7 */
{
if (n >= NUMSTAGE)
return false;
else

{
if (iTIS (n))
return true; /* seek to first TIS op */
else
return fTIS (n + 1);
}

}

bool BUFFER::iNOP (int n)
{

20



return
buf [n]->Enabled ()

&&
(buf [n]->Type () == NOP)
&&
'TNOP (n - 1)
&&
'TAI0 (n - 1)
&&
'TALU (n - 1)
&&
'TMEM (n - 1)
}
bool BUFFER::rNOP (int n)
{
if (n < 0)
return false;
else
{

if (iNOP (m))
return 1; /* seek to first NOP */
else
return rNOP (n - 1);
}
}

bool BUFFER::iAI0 (int n) /* is this the AID op 7 */
{
return
'TBLOCK (n - 1)
&&
buf [n]->Enabled ()
&&
(
iNOP (n)
I
(
(buf [n]->Type () == TIS) /* TIS ... */
I
(/xor... x/
(buf [n]->Type () == ALU) /x ALU */
&&
'£fTIS (n) /* no forward enabled TIS ops */

21



)
)
&&

'rAIO0 (n - 1) /* and there are no previous AIO ops */

H

}

bool BUFFER::rAI0 (int n) /* are
{
if (n < 0)
return false;
else

{
if (iAI0 (n))

there any AIO ops at or previous to n 7 x/

return 1; /* seek to first AIO op */

bool BUFFER::iALU (int n) /* is this the primary ALU op 7 */

else
return rAI0 (n - 1);
}
}
{
return
'rBLOCK (n - 1)
&&
buf [n]->Enabled ()
&&
(
iNOP (n)
I
(
(buf [n]->Type () == ALU) /* this
&&
'iAI0 (n) /* and this is not the
)
)
&&
'TALU (n - 1) /* and ALU was
}

bool BUFFER::rALU (int n) /* are

{
if (n < 0)
return false;

is type ALU x/

ATID op */

not allocated before n */

there any ALU ops at or previous to n 7 x/

22



else
{
if (iALU (n))
return 1; /* seek to first ALU op */
else
return rALU (n - 1);
}
}

bool BUFFER::iMEM (int n) /* is this the "primary" MEM op 7 */
{

return
'TBLOCK (n - 1)
&&
buf [n]->Enabled ()
&&
(
iNOP (n)

Il
(buf [n]->Type () == MEM) /* MEM operation */
)
&&
!TMEM (n - 1) /* and there are no previous MEM ops */

3

bool BUFFER:: rMEM (int n) /* are there any MEM ops at or previous to n 7 */
{
if (n < 0)
return false;

else
{
if (iMEM (n))
return 1;
else
return rMEM (n - 1);
}
}

4.5 FPGA Utilization

Resource Used Total Percent
Occupied CLBs 149 196 76%
Bonded I/O Pins 98 112 87%
F and G Function Generators 219 392 55%

23



H Function Generators 74 196 37%
CLB Flip Flops 58 392 14%
I0B Input Flip Flops 0 112 0%
I0OB Output Flip Flops 0 112 0%
3-State Buffers 0 448 0%
3-State Half Longlines 0 56 0%
Edge Decode Inputs 0 168 0%
Edge Decode Half Longlines 0 16 0%

4.6 Timing Data

Limit Actual Points

(ns) * (ns) Missed Specification

<auto>  227.0 0/58  DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:TO:ffs
<auto> 40.8 0/101 DEFAULT_FROM_PADS_TO_FFS=FROM:pads:T0:ffs
<auto> 223.4 0/54  DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:T0:pads

The dispatch has a very long FF to FF delay, and this is probably because

of the long logic path which goes through the three buffer logic blocks. If there
was more time, the logic could have been optimized.
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Chapter 5

Master & Slave ALU Pipe
Design
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5.1 Introduction

This part of the report includes the basic features of arithmetic logic unit to-
gether with I/O (AIO in breif). The AIO is mainly responsible for doing simple
calculations, reading values from register file, writing the result back to register
file and also doing some character manipulations (includes reading and writing)
through dumb terminal. This ATO expects inputs from dispatch, memory pipe,
ALU pipe, register file, usart and also from switches and passes the outputs to
register file, ALU, memory pipe and to dumb terminal.

5.2 Components

The AIO/ALU pipes contain: ipads, ibuf, bufgs, flip-flops, logic gates, multi-
plexers, decoders, 8-bit built-in adder, obuf, opad and the TIS.

5.3 Instructions Handled & Format

The following notation convention has been defined:

Notation Meaning

D destination register

S source register

SB set bit

TBR one bit signal from TIS

RDA one bit signal from TIS

DT dumb terminal

IMM3 three bit immediate field

D[..] some specified bits of the register file
Instruction Dest Source 1 Source 2
add D S S

sub D S S

and D S S

or D S S

addc D S S + Carry
not D S

slt SB S S

seq SB S S

iotr D TBR

iora D RDA

iot DT S
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ior D DT

lru D[...] IMM3

sll D S IMM3

srl D S IMM3

sra D S IMM3

5.4 Inputs

Signal Name Description Size Origin
WR1 write enable one 1 ALU pipe
WR2 write enable two 1 Memory pipe
Clock clock 1 System
SET2ENS2M set enable to master 1 ALU pipe
NOPALU ALU inst. is NOP 1 Dispatch
CARRYS2M carry bit to master 1 ALU pipe
NOPAIO ATO inst. is NOP 1 Dispatch
SETS2M set bit to master 1 ALU pipe
CYENS2M carry enable bit to master 1 ALU pipe
INSTAIO inst. to AIO 12 Dispatch
RRO data from reg. file 8 Reg. file
RR1 data from reg. file 8 Reg. file
S0 TIS clock divider 1 Switch

S1 TIS clock divider 1 Switch
TXRDY transmitter ready 1 USART
RXRDY receiver ready 1 USART
WS1 write select 1 3 ALU pipe
Wws2 write select 2 3 ALU pipe
5.5 Outputs

Signal Name Description Size Destination
WRO write enable 1 Reg. file
CARRYM2S carry master to slave 1 ALU pipe
TRAP instruction trap 1 Mem pipe
SET set bit 1 Mem pipe
RSO register read select 3 Reg. file
RS1 register read select 3 Reg. file
WSo0 register write select 3 Reg. file
WS1 register write select 3 Reg. file
WDO0 register write data 8 Reg. file
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USART_WRB - WR 1 USART
USART_SCK slow clock 1 USART
USART_CDB C/-D 1 USART
USART_RDB - RD 1 USART
USART_RESET reset 1 USART
D_USART_OUT data 8 USART

5.6 Pipeline Design

The main schematic of the AIO pipe is broken into three different pipeline
stages.

5.6.1 First Pipeline Stage

Input INST(12), NOP
Output INST(12), NOP

The first pipeline stage consists of 13 one-bit “fd” flip-flops. It contains 12
bit instructions and one bit nop. It is to be mentioned here that the flip-flops
are postive edge triggered. After the instructions and the nop bits are latched
through the flip-flop, it (the 12 bit instruction) is forked into two different 6 bit
buses; the first one containing the lower six bits and the other one contaning
the upper six bits. The least significant six bit bus is used for selecting two
three bit source registers from the register file. The upper six bit bus is used
for partial I/O decoding.

Partial Decoding

Input INST(6), NOP, REGS
READTIS.OUT, TISDATA_OUT, I0CS.OUT, DISABLE.OUT,Output

This partial IO decoding is responsible for checking the iot instruction. In
order to check for the IOT instruction, the most significant three bits of the
instructions need to true (in this case the signal is named as SEVEN). This
SEVEN signal is then used to generate the RDA_TBR_OUT signal (true if any
of the iotr or iora instructions is true) which will be used as an IO flag in the
next cycles. Also the ior instruction is tested at this stage and in accordance
with that READTIS_OUT signal is generated; when high it indicates that the
ATO pipe is executing the ior instruction. Last of all, this block checks for the
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iot instruction. If iot returns true, a couple of things happen at the same time
which are following:

o If true, it generates active low R_-WB_OUT signal for one clock pulse and
it gets sent to TIS.

o If true, it also generates active high IOCS signal for one clock cycle and it
also gets sent to TIS. When the AIO pipe executes the iot instruction, it
is transmitting some data to TIS. In order to write something to TIS two
things have to happen at the same time: IOCS goes high for one clock
pulse and also RWB low for one pulse.

e If true, it allows the data (in this case coming from the register file) to go
to TIS through tri—state buffer provided that AIO pipe is not executing a
NOP instruction. In this case the NOP bit is working as a selector for 2
to 1 MUX. The reason is that even though the AIO pipe is executing the
NOP instruction, the instruction bits (which are garbage at this point)
may contain an iot instruction.

o If true, it generates DISABLE_OUT along with NOP which will be passed
to the next pipe meaning the ATO will not do anything for the next two
clock cycles in the second and third pipeline stages.

Destination Register Selection

Input INST(5), NOP
Output DestRegSel

This block is responsible for selecting the destination register for any instruc-
tion. For add, sub, and, or, addc and not instructions the destination register
is specified in bits 7, 8, and 9 of the instruction; for set instrutions there is not
destination register; for iotr, iora, ior, lru, sll, srl, sra instructions
the destination register is specified in bits 3, 4, and 5 of the instruction. So it
can easily be seen that the destination register can be selected in two different
ways: through bit seven, eight and nine and also through bits three, four and
five and in order to do this, three 4 to 1 muxes were chosen.

e S0 is low when add, sub, and, or, addc and not instructions are exe-
cuted

e S0 is high when iotr, iora, ior and lru instructions are executed
e S1 is high when nop or iot instruction is executed
Based on this selection inputs, the appropriate bits are selected for destina-

tion registers.

29



5.6.2 Second Pipeline Stage

Input REGDATAO0(8), REGDATA1(8), INST(8)
RDSEL(8), NOP_IOT, RDA_TBR, TIS.READ
Output same

The inputs are latched to “fd” flip—flops on the rising edge of the next clock
and the outputs are used for doing arithmetic operations.

Operation

Input OPCODE(3), DATA0(S), DATA1(S), OPEXT(3)
IMM(3), DISABLE, CarryC, SetWoTIS
Output AluOut(8), NIS, RDA_S, TBR_S, RTYPE

This block is solely responsible for doing the arithmetic operations. I will
go over each instruction and explain the related hardware. Also, the following
is the select logic which is used to select the appropriate input:

TBR_S goes high when iotr instruction is being executed and passed to
the next stage. RDA_S goes high when iora instruction is being executed
and passed to the next stage. TRAP goes high when ALU and AIO both
are executing set instructions. RTYPE] goes high when add, sub, and, or,
not, addc instructions are executed. NIS goes high if the disable bit is high
from the last clock cycle or the AIO pipe is executing the set instruction. This
gets passed to the next stage and nothing will happen at that stage. RYTPE
goes high when RTYPE goes high or when any one of LRU, SRL, SLL, SRA
signals goes high. SET_E goes high when either one of the set instructions (seq
or slt) is true and the AIO is not executing the DISABLE instruction from the
past clock cycle. Select goes high when the ATO executes sub or set instructions.

For add, sub and addc instructions, a built—in 8 bit adder is used which
expects two eight—bit inputs, one carry bit. It generates one carry—out bit and
an 8-bit sum. For an add instruction, the carry—in is set to zero, for sub it
is one and for the addc instruction the previous is carry (CY) is used and this
is implemented by using one 4 to 1 mux. For add and addc instructions, two
eight bit data busses go directly to the input of the adder; however, for the sub
instruction the second operand is inverted and then passed to the adder. The
result is passed through one 8 by 8 to 1 mux.

For and, or and not instructions, the first operand (which is the eight bit
data) is passed through AND, OR and INVERTERS and the output is passed
to the 8 bit 8 to 1 MUX.
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For the lru instruction, the first six bits of the first operand is latched with
the least two significant bits of the three bit immediate field. For the shifter,
the instructions are tested first whether it is a shift instruction or not. Based
on this, the input data gets passed to the shiftr block along with the three
bit opcode text and also with three bit immediate field. The shifter basically
is responsible for the shift left and for shift arithemetic right. The shiftout
data and the LRU_OUT data is then passed through two tri-state buffers where
LRU_OUT, SHIFT flags (determined from the instruction) are used to select
the right output and hence this output is passed to the 8 bit 8 to 1 mux.

The set instruction is different compared to other instructions; to implement
the set instruction, it has to do subtraction and based on the output of the
subtraction, the set bit is set or not set. For the seq instruction, the output of
the adder is checked whether it is equal to zero or not. If true, it will allow the
mux to select high value for the set flip—flop. This flip—flop is enabled by SET_E
signal. For the s1t instruction, the most significant bit of the adder output is
checked. One sets the set flip—flop. When the AIO pipe is executing the set
instruction it will generate the NIS signal for the next stage to indicate that the
ATO pipe wont do anything for the next stage.

After add, sub, and, or, addc, shift, lru, set instructions are exe-
cuted, the three bit opcode is used to select the correct input from the eight bit
eight to one mux and the output of the mux is propagated for the next pulse as
aluouput.

5.6.3 Third Pipeline Stage

Input RTYPE, RDA_TBR, READTIS, NIS, ALUIN(8), DESTREGS(3)
Output ALUOUT(8), DISABLE, TIS_RCV, IOSET, DestReg(3), RegOp

In this stage, the inputs are stored in “fd” flip-flop and they are latched in
the next clock cycle.

Write Back

Input TIS.RCV, R.TYPE, IOSET, DISABLE, Clock, RDA
TBR, RDA_S, TBR_S
Output FinalData(8), WE, IOCS, RWB, IOR

This stage is writes back the result to the register. Two kinds of data are
manipulated here: one coming from the ALU operation and the other coming
from the TIS. These two 8 bit data are passed through 4 to 1 muxes. The select
inputs for the muxes are the following togetherwith their values:
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S0 goes high when IOTR, IORA, DISABLE bit is high or when both TIS_RCV,
which determines IOR instructions, and RTYPE signals are low. S1 goes high
when TIS_RCV or DISABLE is high.

If add, sub, and, or, not, lru, sll, sra, srl, or addc instructions
are executed, then the aludata is gets written to the destination register; if iotr
or iora instructions are executed, then 0000 0001 gets written to the destination
register, if the ior

instruction gets executed couple of things happen at the same time:

e Generates the active high IOCS flag for one clock pulse

e Generates the active high RWB signal for one clock pulse. (It is to be
menioned here that if the AIO pipe is executing the ior instrucntion,
that means it has to deal with the TIS and the TIS will be responsible for
receiving the characters from the Dumb terminal and in order to do that
both the IOCS and RWB signals will be high one clock pulse)

e If true, then it puts the TISDATA to the destination register.

5.6.4 TRAP Generator

The trap gets generated in three different ways and will be discussed here briefly:

Set Collision

When both the Master and Slave ALU are executing the set instruction, the
TRAP signal goes and it gets passed on to the Memory Pipe which will stall
the PC.

I0 Collision

There is a possibily that the ALU will may execute the iot instrucion in the
first clock cycle and the ior instrucntion in the third clock cycle. If that is
the case, it can be seen that both these two instructions will try to overwrite
the R_WB signal (IOT causes the RWB to go low and IOR causes the RWB to
go high) and this will cause unexpected behavior. The TRAP signal activates
when this occurs, to alert the programmer to the error.

5.6.5 Final Set
This is used to set the set bit; if any of the set bits is high (either from Master

ALU or from Slave ALU), the FINAL_SET gets high.

5.6.6 Final Carry

To set the final carry for the ALU, we pass the carry bit through fdce flip-flop
which is enabled by ENABLE signal. This enable signal gets set when the master
ALU is executing add, sub or addc (beacause these three instructions will set
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the carry after the operation) and there is no NOP in the master ALU or when
the slave ALU is executing the three instructions add, sub, or addc, and the
slave is also not executing no nop instructions. This enable signal delayed by
two clock cycles because the carry gets generated in second clock cycle of the
instruction.

5.6.7 TIS_RESET

TIS gets reset three cycles after the system reset and it stays high for two clock
pulses.

5.7 FPGA Utilization
5.7.1 Master ALU Pipe

Resource Used Total Percent
Occupied CLBs 187 196 95%
Bonded I/0O Pins 83 112 4%
F and G Function Generators 266 392 67%
H Function Generators 60 196 30%
CLB Flip Flops 132 392 33%
I0B Input Flip Flops 0 112 0%
TI0OB Output Flip Flops 0 112 0%
3-State Buffers 40 448 8%
3-State Half Longlines 32 56 57%
Edge Decode Inputs 0 168 0%
Edge Decode Half Longlines 0 32 0%
CLB Fast Carry Logic 6 196 3%

5.7.2 Slave ALU Pipe

ALU without TIS is pretty much the same thing as AIO pipe except it does
not include any TIS or any corresponding TIS signal. Other than that, the
arithemtic operation and the decoding unit is the same.

Resource Used Total Percent
Occupied CLBs 118 196 60%
Bonded I/O Pins 54 112 48%

F and G Function Generators 135 392 34%

H Function Generators 26 196 13%
CLB Flip Flops 56 392 14%
I0B Input Flip Flops 0 112 0%
I0OB Output Flip Flops 0 112 0%
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3-State Buffers 24 448 5%

3-State Half Longlines 16 56 28%
Edge Decode Inputs 0 168 0%
Edge Decode Half Longlines 0 32 0%
CLB Fast Carry Logic 6 196 3%

5.8 Timing Data
5.8.1 Master ALU Pipe

Limit Actual Points

(ns) * (ns) Missed Specification

<auto> 119.9 0/139 DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:T0:ffs
<auto> 50.3 0/161 DEFAULT_FROM_PADS_TO_FFS=FROM:pads:TO:ffs
<auto> 79.1 0/34  DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:T0:pads

5.8.2 Slave ALU Pipe

Limit Actual Points

(ns) * (ns) Missed Specification

<auto> 118.4 0/28 DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:T0:ffs
<auto> 62.6 0/94  DEFAULT_FROM_PADS_TO_FFS=FROM:pads:TO:ffs
<auto> 90.6 0/21  DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:T0:pads
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Chapter 6

Memory Pipe Design
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The Memory Pipe is a three stage pipeline, and resides in FPGA 3. It handles
all instructions that access memory or modify the PC. In order to access 8k
of data memory, and 16K of Instruction Memory, 14 bit addresses are needed.
Because RRZSC has only eight bit data words, and 8 general purpose registers,
rather than use a register pair for the stack pointer and traditional loads/stores,
two special 14-bit registers are used, SP, the Stack Pointer, and AR, the Address
Register. The Memory Pipe is fully responsible for the Program Counter.

6.1 Instructions

The memory pipe handles all instructions that access data memory, either of
the two special registers, AR and SP, and jumps/branches. In addition, 1r1 (load
register low) is handled by the memory pipe. While 1r1 is not consistent with
the other instructions in the pipe, it allows the Dispatch Unit to determine the
appropriate pipe for each instruction based on only the instruction’s MSB.

6.1.1 General Register Instructions

Instruction = Descriptions

1rl load the lower 6 bits of a general purpose register
with an immediate value, zero the upper 2 bits

6.1.2 Memory Access Instructions

Instruction  Descriptions

1w read memory word into general purpose register
sw store general purpose register in memory

6.1.3 Stack Instructions

Instruction Descriptions

pushr push a general purpose register onto the stack

pushh push the upper 6 bits of the AR onto the stack

pushl push the lower 8 bits of the AR onto the stack

popr pop the top of the stack into a general purpose register
poph pop the top of the stack into the upper 6 bits of the AR
popl pop the top of the stack into the lower 8 bits of the AR
artsp initialize the SP with the value of the AR

sptar move the SP to the AR
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6.1.4 Address Register Instructions

Instruction Descriptions

laru loads the upper 6 bits of the AR with the contents of a
general purpose register
larl loads the lower 8 bits of the AR with the contents of a

general purpose register

6.1.5 Jump/Branch Instructions

Instruction Descriptions

bs branch on SET ==

bns branch on SET == 0

ret return to stored PC

jn jump to within +/- 128 instructions

jaln jump to within +/- 128 instructions, store the jump PC in AR
jf jump anywhere in Instruction Memory

jalf jump anywhere in Instruction Memory, store the jump PC in AR

6.2 Interface

The Memory Pipe uses 94 I/O Pins. Of these, 49 are inputs, 37 are ouptuts,
and 8 are bidirectional.

6.2.1 Input signals to the MEMORY PIPE
System Signals

Signal Name Description
CLK system clock
TRAP stalls the PC until system reset, used in case

of multiple writes to same location

From DISPATCH UNIT
Signal Name Description
INSTMEM(12) an instruction issued from the Dispatch Unit

stripped of its most significant bit
PCDIS(14) the PC of the instruction being issued, used
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to compute jump addresses

NOPMEM indicates that the current INSTMEM is not valid
and should not be executed
NOF indicates the instruction buffer cannot hold

two more instructions, stalling the PC

From REGISTER FILE

Signal Name Description

RR4(8) 8 bits of read data

From DATA MEMORY

Signal Name Description

MDAT(8) 8 bits of read data

From the ALU PIPES

Signal Name Description

SET used for branch condition checks

6.2.2 Output Signals from the MEMORY PIPE
To DISPATCH UNIT

Signal Name Description

PCC indicates a PC modifying instruction (jump)

has cleared the memory pipe, and instruction
flow can continue

To REGISTER FILE

Signal Name Description

RS4(3) read register select
WS2(3) write register select
WRE2 write register enable
WD2(8) write register data

38



To DATA MEMORY

Signal Name Description

DADDR(13) data address selection
MDAT(8) data to be written to memory
MWE memory write enable

To INSTRUCTION MEMORY

Signal Name Description

PC(14) the program counter, with its upper 12 bits
as an index to two instructions in memory

6.3 Implementation

The Memory Pipe is a three stage pipeline. Input Flip-Flops are used as the
first stage pipeline registers to store the instruction to be executed and its
accompanying state information (PC, SET, NOP and NOF flags ). All pipeline
and special purpose registers are rising edge triggered on the system clock. Full
instruction decoding is performed by the Control Unit in the first stage. Memory
and jump address calculations, and Register File reads are also completed in the
first stage. Data Memory accesses occur in the second stage. The third stage is
used for Register File writeback. In the Control Unit, most multiplexor controls
are implemented using 16X1 ROMs, and write enable signals for registers and
memory are generated by hardwired controls. Write enable signals are also
conditioned with the NOP flag, meaning no register or memory writes occur on
a NOP in the instruction stream. The following is a more specific description
of what is happening in each stage for each instruction:

General Register Instruction

Instructions 1rl

Stage 1 Instruction Decode
Extend Immediate Field

Stage 2

Stage 3 Write Destination Register

Memory Access Instructions

Instructions 1w, sw
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Stage 1 Instruction Decode
Compute Memory Address
Read General Register (sw)
Stage 2 Access Data Memory
Stage 3 Write Destination Register (1w)

Stack Instructions

Instructions pushr, pushh, pushl, popr, poph, popl, artsp, sptar

Stage 1 Instruction Decode
Load SP, AR (artsp, sptar)
Read General Register (pushr)
Increment/Decrement SP (all but artsp, sptar)
Stage 2 Access Data Memory
Write to AR (poph, popl)
Stage 3 Write to General Register (popr)

Address Register Instructions

Instructions laru, larl

Stage 1 Instruction Decode
Read General Register
Write to AR

Stage 2

Stage 3

Jump/Branch Instructions

Instructions bs, bns, jn, jaln, jf, jalf

Stage 1 Instruction Decode
Compute Jump Address
Check Branch Condition
Write New PC
Write New AR (jaln, jalf)
Stage 2 Raise PCC (PC is now valid )
Stage 3

Three 14 bit adders are used in the design. The first two are general purpose
adders, and compute the memory and jump addresses respectively. The third
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is a special ’increment to the next even number’ adder. This adder is used to
increment the PC. See Section 4 for more details.

6.4 Program Counter

The PC is a 14 bit register used as the read address into Instruction Memory. Be-
cause Instruction Memory is arranged in two parallel banks of 8K instructions,
only the upper 13 bits of the PC are used to address memory. Memory is also
arranged such that two reads are always performed concurrently (in the event
that one of the instructions is invalid, the Dispatch Unit sets a flag). The least
significant bit of the PC is used only on jumps/branches when the destination
address is odd. The PC is incremented by two on every clock cycle when the
NOF flag from the Dispatch Unit is low. When NOF is high, the PC is stalled
for that clock cycle. A special situation arises when the PC is odd as the result
of a jump/branch. In this case, the PC is incremented by one. The PC is changed
in the following situations:

PC+ PC+2 on every clock cycle unless NOF is high
PC«+ PC+1 if PC odd as a result of a jump/branch
PC < AR on jf, jalf, ret

PC < PC + 8 bit offset  on bs, bns, jn, jaln

6.5 Address Register

The 14 bit Address Register, AR, has two primary purposes. First, it is used
as the base address calculation for loads and stores. Both load and store have
six bit immediate fields, which are added to the AR when accessing memory.
Additionally, the AR is used in conjunction with the PC on jumps, serving as
the jump address or storing the return address. On a jf or ret, the AR is
loaded into the PC. In a jaln or jalf, the PC and AR are swapped, thus saving
the return address into the AR. In the case of multiple jump and links, as in a
function calling several other functions, the AR is stored onto the stack using
pushh, pushl, with the AR being restored by popl and poph upon return from
the function calls. All AR modifying instructions are completed in the first stage
with the exception of poph and popl. This means there is no latency between
modifying the AR and using its value. The AR is changed by the following
instructions:

laru AR;3.8 ¢ Rls0
larl AR7.9 < R1
poph AR;3.8 M[SP]
popl ARy < M[SP]
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sptar AR < SP
jaln AR+« PC
jalf AR+« PC

6.6 Stack Operations

All stack operations access Data Memory through the Stack Pointer (SP). In ad-
dition, all stack accesses automatically increment/decrement the SP. The stack
can be located anywhere in Data Memory by loading the AR with the desired
stack location then executing the artsp instruction. The stack grows up in
memory.

pushr M[SP+ +] + R1
pushh M[SP + +] < ARj3s
pushl M[SP + +] < ARz,
popr AR ¢ M[SP — —]
pOph AR13.8 M[— — SP]
popl ARy « M[— — SP]
artsp SP < AR

6.7 Jumps / Branches

Jump/branch addresses are computed relative to PCDIS, which is their location
in Instruction Memory. This is done because the PC is not incremented every
clock cycle and is nearly always even. System definition also disallows more than
one jump or branch instruction residing in the Dispatch Unit at once. This is
to prevent corruption of the PCDIS value. Thus there must be at least two
instruction between consecutive jumps or branches. Jump nears and branches
have an 8 bit immediate field, and can jump to within 4 /- 128 instructions, while
jump fars can jump anywhere within Instruction Memory. However, Jump fars
require some overhead, because the AR must first be loaded (usually from a
pointer table in memory), then the jump executed. Jump and Links (jalX),
store PCDIS in the AR, and are used in conjuction with the ret instruction.

bs PC « PC+ s Immg < SET == 1
bns  PC ¢+ PC+ s Immg < SET == 1
jn PC + PC+ s Tmmg

jaln PC+« PC+ s Immg || AR « PC
jt PC + AR

jalf PC+ AR
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ret PC < AR

6.8 FPGA Utilization

The Memory Pipe uses a large amount of available CLBs because of the large
number of multiplexors needed. The instructions handled by the memory pipe
are very diverse in terms of the location and size of the instruction fields used
as offset calculation. Additionally, the 14 bit multiplexors associated with the
PC, AR, and SP consume a large number of CLBs.

Resource Used Total Percent
Occupied CLBs 180 196 91%
Bonded I/0 Pins 94 112 83%
F and G Function Generators 248 392 63%
H Function Generators 58 196 29%
CLB Flip Flops 119 392 30%
I0B Input Flip Flops 26 112 23%
TI0B Output Flip Flops 0 112 0%
3-State Buffers 0 448 0%
3-State Half Longlines 0 56 0%
Edge Decode Inputs 0 168 0%
Edge Decode Half Longlines 0 16 0%
CLB Fast Carry Logic 16 196 8%

6.9 Timing Data

The timing delays in the Memory Pipe are very small in comparison to the
other FPGA’s. Because I/O Flip-Flops are used on all inputs, the maximum
input-pad-to-flip-flop delays are equal to the delay of an IBUF. The flip- flop-to-
output-d delay is also small because all output signal pass through at most one
gate before going to an OBUF. The flip-flop-to-flip-flop delay is somewhat larger
because of the number of logic levels some signals must propagate through. The
critical path here is the computaion of the destination address on branches and
jump nears. The address must propagate through a 14 bit adder, one 4 to 1
mux, and two 2 to 1 muxes.

Limit Actual Points

(ns) * (ns) Missed Specification

<auto> 86.1 0/144 DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:T0:ffs
<auto> 47.8 0/231 DEFAULT_FROM_PADS_TO_FFS=FROM:pads:TO:ffs
<auto> 48.5 0/53  DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:T0:pads
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Chapter 7

Register File Design
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The register file contains eight eight—bit general registers numbered 0 through
7. Reads from Register 0 give 0x00, and writes to Register 0 have no effect.

Each register consists of eight one bit registers. A one bit register is made
out of a 1-bit ‘fd’ flip-flop. Each register is triggered on the negative edge of the
system clock. Also, each regitser expects eight bit input data, system clock and
the WE (write enable) select signal. Based on the value of the write enable, it
performs the read or write command to the register.

It is to be mentioned here that our register file can perform five multiple
reads and three multple write in one clock cycle. In order to do this, we had to
make the write selection decoding logic which would expect three different write
enable signals from three different pipes together with three different destination
registers. The write select unit passes three eight bit data and the right control
singal to Data select unit. Since there are eight different registers, we need eight
different data select units. Each data select unit basically selects which data
will get written to the register specified in the control.

In order to perform the read operation from the register file, we had to make
five different eight bit 8 to 1 MUXs. The MUX selection inputs come from the
three bit register select signals provided by each pipe.

While designing the register file we encountered many problems. The first
problem was to make the whole thing fit into one FPGA. The first time we ran
the xmake lasted for one hour and a half with 14% routing. Then we had to
change the design specially the Data select unit. Like mentioned before we have
got eight different data selection unit. When we did design this first, we made
these eight data select unit out of gates; then we used sort of trial and error
method by using seven data selection unit with gates and only one with tri state
buffer and this happen to solve our problem. It can be seen from the following
table that register file was almost full with one FPGA.

7.1 FPGA Utilization

Resource Used Total Percent
Occupied CLBs 196 196 100%
Bonded I/0 Pins 93 112 83%
F and G Function Generators 380 392 96%
H Function Generators 128 196 65%
CLB Flip Flops 56 392 14%
IOB Input Flip Flops 0 112 0%
I0B Output Flip Flops 0 112 0%
3-State Buffers 24 448 5%
3-State Half Longlines 16 56 28%
Edge Decode Inputs 0 168 0%
Edge Decode Half Longlines 0 16 0%
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7.2 Timing Data

(ns) * (ns) Missed Specification

<auto> 19.7 0/56 DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:T0:ffs
<auto> 63.0 0/112 DEFAULT_FROM_PADS_TO_FFS=FROM:pads:TO:ffs
<auto> 61.1 0/40  DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:T0:pads
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Chapter 8

Superscalar Performance

47



Program RRISC Superscalar RRZSC non—Superscalar % Improvement

(inst/cycle) (inst/cycle)
Matrix Add/Sub 1.13 0.90 26%
Matrix Multiply 0.55 0.40 38%
Sort (no I/0) 0.75 0.65 15%
1/0 0.43 0.43 0%
Ideal Case 1.96 0.98 100%

Instructions per cycle were counted using a 16 bit counter triggering the
logic analyzer every 64K clock cycles. A 16 bit adder with carry out was used
to keep a running sum of the instructions issued by the Dispatch Unit. NOPs
are not counted as instructions.

The design for counting the number of instructions per cycle was placed in
the last FPGA (#5). The schematic and traces of the design follow this section.

Pure Superscalar Code is a sequence of test instructions that has no known
application other than to demonstrate the potentially high throughput achiev-
able by RRZSC .
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Chapter 9

Macro Assembler
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9.1 Introduction

A macro-assembler, MAD!, was developed for the RRZSC project. The pur-
pose of the macro—assembler was to provide an easy way for the programmer
to do commonly needed tasks without having to re-implement them each time
in the DELA code. MAD was written in PERL. The Life and Menu programs
were written using MAD.

9.2 MAD Flow

MAD goes through several stages before emitting DELA code:
1. Open input file, start reading input
Check code format, on error exit
Break high—level commands into low-level MAD commands

Verify individual commands and parameter ranges

A o R

Expand low-level MAD commands to DELA code

9.3 Language Definition

Notational Conventions

In the following R[1-3] is one of [a-gz]. X is a value in hexadecimal (0xff) or base-
10 (54). X can also be a single character in single quotes (’z’) which evaluates
to its ASCII value. And all other strings are literal (part of the language). L is
an assembler label. Each command is seperated by a semicolon ”;”.

Definition

Command Meaning

at X: Put the next instruction at location X in memory
L: Assembler Label

R=R+R Add two registers
R=R-R Subtract two registers
R=RorR OR two registers

R =R and R AND two registers
R=R+cR Add with carry

R = not R Invert R

set R1 < R2 Set less than

set R1 > R2 Set less than

set R1 == R2 Set equal

R = TBR Put TBR flag into LSB of R

IMAD is an acronym for “Macro Assembler for DELA”
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R = RDA
send R

R = recv
R=X

R <<= X
R >>a= X
R >>=X
R = M[sX]
M[sX] = R
AR = R1 || R2
AR = X(R1,R2)
push ar
pop ar
push R
popr R

AR = SP
SP = AR
ret

nop

bs L

bns L
jmp L
jal L
jmpfar
jalfar
R=20
done
input R
output R
R++

R__

R+=X
R-=X
R=R
AR+=X
AR-=X

Put RDA flag into LSB of R

Send register R to the TIS

Receive from TIS into R

Loads value X into R, possibly multiple instructions
Shift Left R by X

Shift Right Arithmetic R by X

Shift Right Logical R by X

Load memory location AR + X into register R
Store R into memory location AR + X

Load AR: R1 to upper byte, and R2 to lower byte
Load X into AR, using R1 and R2 for temporary registers
Push AR onto the stack

Pop AR off of the stack

Push register R onto the stack

Pop register R off of the stack

Copy SP into AR

Sopy AR into SP

Return from subroutine

Insert nop into instruction stream

Branch Set to label L

Branch Not Set to label L

Jump Near to label L

Jump-and-Link Near to label L
Jump Far to label L
Jump—-and-Link Far to label L

Load 0x00 into register R

Infinite loop — halt

Wait for TIS, then put character into R

Wait for TIS, then output character from R
Increment R

Decrement R

Increment R by X

Decrement R by X

Copy register value

Imcrement AR by X

Decrement AR by X

9.4 Example

a=1;
b = ’B’;
g=D>b - a;

output g; ! output "A"

g=D>b+ z;
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output g; ! output "B"
g =D>b+ a;
output g; ! output "C"

ar = 50(e, f); ! initialize AR with decimal value 50

A=Y

m[0] = a; ! write $1 to memory location 50

a = bb;

m[1] = a; ! write $1 to memory location 51

input g;

m[2] = g; ! write key board ASCII value to memory location 50 + 2

!
! now print

!

g = m[0];

output g; ! output a "Y"

g = m[1];

output g; ! output a LUCKY "7"

g = m[2];

output g; ! output the last key user pressed
done;
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Individual Contributions
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10.1 Zachary Smith

As group leader Zak was involved in nearly every phase of RRZSC developo-
ment. He was heavily involved in developing the architecture and instrucion set
including rough block descriptions of all major system components and he de-
fined the functions of each pipeline stage. He designed, entered, and debugged
the dispatch unit, and wrote the Life program for the demonstration.

10.2 Mostafa Arifin

Mostafa was primarily responsible for the design and testing of the two ALU
pipes, and interfacing these units with the TIS. He was also heavily involved
in Register File development, and assisted Mr. Lucman in many hardware
and wirewrapping related activites. He also wrote the menu screen for the
demonstration.

10.3 John Liu

John was involved in the original definition of the architecture and instruction
set. He also wrote the original MAD, and the subsequent 10 revisions. MAD
made code generation fast and easy.

10.4 Jeffry Lucman

Jeffry contributed in many areas of RRZSC development including Register
File design and testing, hardware tests on all FPGAs and memory modules,
and several smaller components found in the ALU and Memory Pipes. Perhaps
his most appreciated accomplishment was the error—ree wirewrapping of the
entire board. Jeffry also wrote the Sort program in optimized DELA code for
the demonstration.

10.5 Jeremy Petsinger

Jeremy was heavily involved in the development of the instruction set and defini-
tion of the RRZSC Architecture. Additionally, Jeremy designed and tested the
Memory Pipe, and wrote matrix routines in DELA code, which demonstrated
realistic throughputs on RRZSC optimized code.
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10.6 Accomplishment Matrix

Task

Gimmick
Organization Block
Instruction Set
Final Organization
Pipe Functions
POO

Dispatch
Design
Entry
Simulation

Regfile
Design
Entry
Simulation

Memory Interface

ATO Pipe
Design
Entry
Simulation

ALU Pipe
Design
Entry
Simulation

Memory Pipe
Design
Entry
Simulation

System Simulation
HardWare Debug
Software Tools
Software Development
Dela

FPGA Pin Test
Memory Test
Path Delays
Compute Stats
WireWrap

MAD

Zak

20%
35%
34%
100%
50%
100%

100%
100%
100%

Jeremy

20%
35%
34%

50%

95

Mostafa

20%
10%
™%

20%
20%

12%

40%

30%

Jeffrey

20%
10%
™%

5%

21%
20%

27%
100%
60%
100%
100%
50%
70%

John

20%
10%
18%

15%
20%
10%

100%



Chapter 11

Limits and Epilogue
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11.1 Limitations of RRZSC

The largest limitation is the fact that we use only 13-bit instructions. This
limits us in many ways. First, our jump addresses are only eight bits, which
means that for any jumps farther than +/- 128 instructions, which is most of
the time, we must first reference a pointer table, load the AR, then jump far,
which is very time consuming.

The second major limitation is the fact that we only have 8 registers. In the
ideal case, our superscalar machine executes 2 instructions per clock cycle, which
means for normal arithmetic operations, we run out of registers very quickly.

The third limitation is largely a function of time. With more time or more
people in the group, we could have built a smart compiler that converted high
level code into optimized RRZSC code. This would mean it issues do—nothing
instructions to some of the pipes while keeping the other pipes running. This
would avoid the use of nops to solve potential data dependencies.

The empirical maximum clock frequency was found to be 4.9 MHz, 204ns.
We think that this limit was either inside the Dispatch unit, which had long FF
to FF delays, or that is was due to the register file write, which had to happen
during the PHI1 clock. The delay for a register write is approximately F/F to
PADS + worst PADS to F/F:

20+ 63 = 83ns

This period should be within active high clock period because the data will
be written on the negative PHI1 clock edge, and becomes active after the positive
edge of PHI1. This yields a theoretical maximum clock period of 100/25%83ns =
332ns, which is a frequency of 3.01 MHz.

11.2 Epilogue

After completion of the RRZSC microprocessor, the team will disband and
return to their old lifestyles. John will begin his job at intel in January, citing
the fact that he likes working a lot as his main job selection criteria. Mostafa
will begin graduate school in January, and is considering retaking 554 because
he likes Mentor so much. Jeffry will continue his undergraduate studies. Zak
will graduate in May and hopes to pursue a Ph.D. in chicken farming. Asked
about his future plans, Jeremy responded “I’'m kind of tired, I think I might go
to bed.”
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Chapter 12

DELA Definition
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This is the DELA instruction format specification.

14 16 ! 16K X 16 bits memory

nothing

opcode_4bit

add
sub
and
or
addc
not
1rl
1w
sSW

opcode_bbit

bs
bns
jn
jf
jaln
jalf

opcode_7bit

slt
seq
iotr
iora
iot
ior
1ru
s11
srl
sra
pushr
larl

popr

15,

OH
1H
2H
3H
4H
5H
8H
9H

OAH;

1AH
1BH
1CH
1DH
1EH
1FH;

30H
31H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
58H
5AH
5CH

13, 0;

12, 9, 0

3

12, 8, 0

12, 6, 0

! bit 13, 14 & 15 are not used

! Default opcode is 0

! Default opcode is O

! Default opcode is O
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opcode_13bit

rd

rs

laru 5EH
popl 60H
poph 61H
ret 62H
artsp 63H
pushh  64H
pushl  65H
sptar  66H;
12, 0, O
nop0 19COH
nopl 19C1H
nop2 19C2H
nop3 19C3H
nop4 19C4H
nopb 19C5H
nop6 19C6H
nop7 19C7H
nop8 19C8H
nop9 19C9H
nopa 19CAH
nopb 19CBH
nopc 19CCH
nopd 19CDH
nope 19CEH
nopf 19CFH;
8, 6, 0
do OH
d1 1H
d2 2H
d3 3H
d4 4H
d5 5H
dé 6H
a7 TH;
5, 3, 0
s0 OH
sl 1H
s2 2H
s3 3H

! Default is O

! Default Rd is $0

! Default Rs is $0
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rt

imm6

imm3

jaddr

s4
sb
s6
s7

t0
t1
t2
t3
t4
tb5
t6
t7

4H
5H
6H
TH;

OH
1H
2H
3H
4H
b5H
6H
TH;

5, 0, 0;

2, 0, 0;

7, 0, 0;

! Default Rt is $0

! Default 6 bit immediate is OOH

! Default 3 bit immediate is OH

! Default jump address is OOH
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Chapter 13

Software

(not included due to space considerations)
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Chapter 14

Annotated Quicksim Traces

(not included due to space considerations)
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Chapter 15

Full Schematics

(not included due to space considerations)
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