Study of Relative Performance Impact:
Coherence Protocol vs. Network Speed !

Zak Smith Mostafa Arifin

May 8, 1998

!Completed as semester project for CS/ECE 757, Prof. Mark Hill

Abstract

Architects and implementors must know design trade—offs to design successful
systems. Two important aspects of multiprocessor performance are network
quality and coherence protocol. We study the performance impact of coher-
ence protocol choice (MSI vs. MESI) as compared to the performance impact
of the high—speed network. A higher quality network is either wider, or has
less latency, or both.

We find that in the majority of cases, network quality dominates the
effects of coherence protocol— that is, lower—quality networks with the MESI
protocol do not yield faster runs that higher—quality networks with the MSI
protocol. We also note that program characteristics can affect which protocol
performs better.

Contents

1 Introduction 3
1.1 Topic Importance 3
1.2 Hypothesis 3
1.3 Definitions e 4

1.3.1 FlitDelay oo o 4
1.3.2 FlitWidth 4
1.3.3 Coherence Protocol, 4

2 Methods 5
2.1 Simulator Model 5
2.2 Search-space 5
2.3 Benchmarks 6
2.4 Data-sets 6

3 Results 7
3.1 FFT ... e 8

3.1.1 Description 8
3.1.2 Normalized Runtime 8
3.1.3 Runtime Discussion 9
3.1.4 Neighbor Dominance 10
3.1.5 Dominance Discussion 11
3.2 MP3D 12
3.2.1 Description 12
3.2.2 Normalized Runtime 12
3.2.3 Runtime Discussion 13
3.2.4 Neighbor Dominance 14
3.2.5 Dominance Discussion 14
3.3 LU o e 15

3.3.1 Description Lo 15

3.3.2 Normalized Runtime 15

3.3.3 Runtime Discussion 16

3.3.4 Neighbor Dominance 16

3.3.5 Dominance Discussion 17

3.4 RADIX s 18
3.4.1 Descriptiono 18

3.4.2 Normalized Runtime 18

3.4.3 Runtime Discussion 19

3.4.4 Neighbor Dominance 20

3.4.5 Dominance Discussion 20

4 Conclusions 21
4.1 Hypothesis. 21
4.2 Protocol Importance 21
4.3 Network Quality Importance 22
4.4 Application Dependence 22
4.5 Future Work 22

5 References 23

Chapter 1

Introduction

1.1 Topic Importance

In order for a machine to achieve high performance within a cost constraint,
architects and implementors must know the benefits and trade-offs for dif-
ferent design decisions.

The performance of the interconnection network is key in multiprocessor
systems. In all but “embarrassingly parallel” applications, communication
between processing elements provides those elements with the data they need
to continue processing.

Our study examines three parameters which affect network performance:
coherence protocol, flit delay, and flit size. We believe this type of study is
important to verify theoretical models with real benchmark results.

1.2 Hypothesis

During lecture, it was noted that a good implementation of the interconnec-
tion network often dominates other factors such as network topology. Since
significant time was spent discussing coherence protocols [1], we decided to
determine the relative performance impact of coherence protocol as compared
to “quality of network implementation.” Thus, our hypothesis:

A good network implementation dominates the effects of choosing a spe-
cific coherence protocol.

1.3 Definitions

1.3.1 Flit Delay

The flit delay is the time it takes for a flit to pass through a network switch,
relative to the clock speed of the processor. For example, if the flit delay was
2, and the processor was running at 300 Mhz, it would take 6.6 ns for a flit
to propagate through a switch. This primarily affects latency.

1.3.2 Flit Width

The flit width specifies the number of bytes in each network flit, which is
equivalent to the width of the network. This primarily affects bandwidth.

1.3.3 Coherence Protocol

The two coherence protocols we look at are the MSI and MESI protocols
discussed in lecture and in [1].

MESI

M Modified This is the only copy, dirty.

E Exclusive FEnsured to be the only RO copy.
S Shared One of two or more RO copies.

I Invalid Block not present.

MSI
M Modified This is the only copy, dirty.
S Shared One of one or more RO copies.

I Invalid Block not present.

Thus the primary difference between the two is that, for MSI, if a pro-
cessor reads a block known to no other processor and then writes it, it must
notify the directory (S to M). For MESI, this is not the case: a processor that
reads the block first has it in Exclusive and can move to Modified without
any traffic to the directory (E to M).

At first glance, it would appear that MESI would perform better, although
as we will see later, there can be implementation issues which make this not
the case.

Chapter 2

Methods

2.1 Simulator Model

We chose to use RSIM [7,3], an ILP multiprocessor simulator developed at
Rice University. The system simulates a collection of workstation—like nodes
connected in a 2d mesh interconnection network, with CC-NUMA based on
a distributed directory.

We simulated a 16 processor system to control runtime of our simulations.

2.2 Search-space

One of the parameters we want to change is “quality of network implementa-
tion.” We decided this is basically a combination of flit delay (related to the
clock speed of the network), and the flit size (width of the network). In other
words, the “best” network will have the fastest clock speed and the widest
data-path. The “worst” network will have the slowest clock speed and the
the narrowest data-path.

To cover a range of network qualities, we chose to use flit widths of 2, 4,
8 bytes, and flit delays of 2, 4, 8 processor clocks. Thus for each benchmark,
we have 18 data-points:

| | FD2 | FD4 | FD8 |

FS8 || MESI, MSI | MESI, MSI | MESI, MSI
FS4 | MESI, MSI | MESI, MSI | MESI, MSI
FS2 | MESI, MSI | MESI, MSI | MESI, MSI

2.3 Benchmarks

There are 5 benchmark programs available for RSIM from the SPLASH [5]
and SPLASH-2 [6] sets: mp3d, fTt, radix, lu, and water. These will be

described in the results section.

2.4 Data—sets

Condor [4], is a system for high-throughput computing available here at the
UW. It is a great tool for architects because simulations typically take days to
finish. Condor allows many of these jobs to be distributed to idle machines.
Normal condor jobs are check-pointed and “migrated” off machines when a
user logs on or the machine is to be powered off. This allows the job continue
where it left off when another machine becomes available.

Because of some tricky code in RSIM, it would not work correctly when
linked against the Condor libraries. Thus we were limited to running RSIM as
a “vanilla” job — that is, when the job is interrupted by a user or the machine
being powered down, instead of check-pointing the job so it could continue on
another machine, the vanilla jobs are killed and must be restarted. Because
of this, we had to make sure our simulations would finish in less than about
12 hours! This limited the number of processors we could simulate and the
size of the data-sets run in each application.

We have no results for water because none of the nontrivial data-sets
could finish in the average idle time of a machine in the Condor pool.

Chapter 3

Results

3.1 FFT

3.1.1 Description

FFT is a complex 1-D version of the radix-\/n six-step algorithm described
by David Bailey. It is optimized to minimize interprocessor communication.

[6]

3.1.2 Normalized Runtime

X 10_3 FS=8

0.01 T

0.005

0
1 2 3

Description of graph: The first graph (first row) represents all the data
for flit size = 8, the second row represents flit size = 4, and the bottom row
represents flit size = 2. In each graph the first pair of data (1) is flit delay =
2, (2) is flit delay = 4, and the last (3) is flit delay = 8.

The first of each pair (blue) represents the MESI runtime, the second (red)
represents the MSI runtime. The magnitude of the graph is the performance
degradation relative to the baseline value (FS8, FD2, MESI). Thus we can
see the slowest run was FS2/FDS, the value in the lower right-hand corner.
The fastest run was FS8/FD2, the value in the upper left-hand corner.

It is also important to note that for any pair, neighboring values (those
above, below, left, or right one unit) differ by only one “step” of FS (vertical
hops) or FD (horizontal hops).

Using this format of graph, it is possible to see the dominance of network
quality (FS and FD) over protocol choice: there is no case such that the MESI
run of a lower quality network is faster than the MSI run for a higher quality
network. It is easier to visualize this relation using a neighbor dominance
graph.

3.1.3 Runtime Discussion

We can see that, for FFT, the protocol choice has little effect on runtime
when compared to flit delay or flit size. Flit size has the largest impact, that
is, all the runs with FS2 are much slower than those with FS4, and similarly
for FS4 over FS2.

It is also important to note that in all cases, the MESI protocol run is
faster than the MSI protocol run.

It is also important to note the scale of the runtime slowdown: the slowest
run is less than 1% slower than the fastest run. This is probably because this
FFT implementation is optimized to reduce communication, handles latency
well, and does not have lots of communication on the critical path.

3.1.4 Neighbor Dominance

x107°

4.5 T T T T

w
T

N
T

[E
T

FS Next Neighbor
4k FD Next Neighbor
35
25+
1.5+
) II II |
0

8

The nelghbor dommance graph shows the minimum dlfference in perfor-
mance between each network quality and all of its “one—hop” neighbors which
have a lower quality network. The blue bar of each pair is the common-—
flit—size neighbor (flit delays differ), and the red bar of each pair is the
common—flit—delay neighbor (flit sizes differ). A positive value means the
lower quality network always had a slower runtime. Each bar is computed:
diff = min(worse quality network’s MSI, MESI) - max(better quality net-
work’s MSI, MESI).

Pair 3 and pair 6 have no common—flit—size lower—quality neighbors be-
cause they correspond to the FS8/FD8 and FS4/FD8 runs — we tested no
flit delays > 8. Similarly, pair 7 and pair 8 have no common—flit—delay neigh-

10

bors because we tested no flit sizes < 2. There is no pair 9 because FS2/FDS8
is the worst network quality we tested.

For example, pair 1 indicates two things: FS8/FD4/MSI is 0.0641%
slower than FS8/FD2/MESI, and FS4/FD2/MSI is 0.131% slower than
FS8/FD2/MESI.

Positive values indicate our hypothesis is supported: the network quality
does dominate protocol effect. Negative values, if any, indicate that a lower—
quality network’s MSI run is faster than a faster network’s MESI run (or vice
versa).

3.1.5 Dominance Discussion

For FFT, it is important to note that our hypothesis is supported in all
cases. Also, from the common—flit—delay bars (red), we can see decreasing
the flit size has a larger negative effect than increasing the flit delay. In other
words, it’s easer to make the program speed up with a wider network than
by decreasing the flit delay.

11

3.2 MP3D

3.2.1 Description

MP3D simulates the flow of a rarefied fluid, for example, around a space-
craft as it enters the atmosphere. Each molecule is statically scheduled on a
processor, and data sharing occurs when particles collide. [5]

3.2.2 Normalized Runtime

Fs=8
0.03 ‘

0.02- _

0.01 _

o I ,

-0.01 | | |

0.06 T

0.04 N

0.02- _

0.05F

12

3.2.3 Runtime Discussion

Similar to FFT, the protocol choice has little effect on the runtime when
compared to flit delay or flit size. Flit size again has the largest impact, that
is, all the runs with FS2 are much slower than those with FS4, and similarly
for FS4 over FS2.

In MP3D, however, the MESI runs are not always faster than the MSI
runs. In fact, the “baseline” run was not the fastest run in this set — that’s
why the first graph not based at 0! MSI will perform better than MEST in the
RSIM implementation when it is often the case that EX blocks are replaced
in a processor’s cache. It must notify the directory. Another case in which
MSI will outperform MESI is when the first read to a block (P1 has it in E)
is followed by many other processors’ reads of the same block (P1 must move
to S).

The scale of runtime slowdown is much greater than that seen for FFT.
The slowest MP3D run is 9% slower than its fastest run.

13

3.2.4 Neighbor Dominance

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

FS Next Neighbor
FD Next Neighbor

ol

3.2.5 Dominance Discussion

8

For MP3D, it is important to note that our hypothesis is supported in all

cases. Also, from the common—flit-delay bars (red), we can see decreasing
the flit size has a larger negative effect than increasing the flit delay. In other

words, it’s easer to make the program speed up with a wider network than

by decreasing the flit delay.

14

3.3 LU

3.3.1 Description

LU factors a dense matrix into the product of a lower triangular and an upper
triangular matrix. The data is distributed to exploit temporal locality and
to reduce contention for blocks. [6]

3.3.2 Normalized Runtime

X 10_3 FS=8
15 T

10

o

o

Y]
T
|

©
o
e
T
I

0.06 T

0.04

0.02

15

3.3.3 Runtime Discussion

Similar to FFT and MP3D, the protocol choice has little effect on the runtime
when compared to flit delay or flit size. Flit size again has the largest impact,
that is, all the runs with FS2 are much slower than those with FS4, and
similarly for FS4 over FS2.

In LU, however, the MESI runs are not always faster than the MSI runs.
In fact, the “baseline” run was not the fastest run in this set — that’s why
the first graph not based at 0! The reasons for this were described in the
MP3D section.

The scale of runtime slowdown is much greater than that seen for FFT.
The slowest LU run is 6% slower than its fastest run.

3.3.4 Neighbor Dominance

0.025 T T T

- FS Next Neighbor
FD Next Neighbor

0.02-
0.015
0.01
0.005 - J u ‘ ‘
0 !
1 2 3 4 5 6 7 8

16

3.3.5 Dominance Discussion

For LU, it is important to note that our hypothesis is supported in all cases.
Also, from the common—flit—delay bars (red), we can see decreasing the flit
size has a larger negative effect than increasing the flit delay. In other words,
it’s easer to make the program speed up with a wider network than by de-
creasing the flit delay.

17

3.4 RADIX

3.4.1 Description

RADIX is an integer sort kernel described by Blelloch et al. Each iteration
requires all-to—all communication to send the local histograms to generate
a global histogram, and then each processor uses this global histogram to
permute its keys [6]. RADIX is data and communication intensive.

3.4.2 Normalized Runtime

FS=8
0.3 T

0.2 b
B
ok — lE

-01 L L L

0.8 T

0.6 .

0.4 .

0.2

0

15

18

3.4.3 Runtime Discussion

Contrary to what we saw for the other benchmarks, the protocol choice has
a large impact on RADIX. It is still true that improving flit size has the
largest performance impact, but now protocol choice becomes as nearly as
important as flit delay.

The MSI runs are always faster than the corresponding MESI run. This
is because of two factors. The data-set is large, leading to much cache re-
placement, which creates more network traffic for those blocks in the E state.
Secondly, when the global histogram is created, all processors must read it.
The first time a value is read, it will be in the E state; when the next pro-
cessor reads that value, the first processor must move to the S state, which
requires a message.

The scale of runtime slowdown is over an order of magnitude more than
that seen for FFT, MP3D, and LU. The slowest run is over 150% slower than
the fastest run. We believe this is because of factors already mentioned: large
data size, lots of communication, and communication on critical path.

19

3.4.4 Neighbor Dominance

0.9 T T T T T T T T

- FS Next Neighbor
0.8} FD Next Neighbor

0.7

0.6

0.5
04

0.3

0.2
0.1
ok = | I . | I

01 ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8

3.4.5 Dominance Discussion

RADIX is the only benchmark which refutes our hypothesis. The negative
values in the neighbor dominance graph show cases in which a lower—quality
network running MSI has a faster runtime than a higher—quality network
running MESI.

It is important to note, however, that this is only true in four cases (1,
4,7, 8) and that in those cases the difference is between common—flit—size
neighbors. In other words, even though flit delay does not dominate the effect
of protocol in those cases, the effect of flit size does dominate the protocol
choice.

20

Chapter 4

Conclusions

4.1 Hypothesis

We found that for the majority of the cases examined, network quality does
dominate coherence protocol choice.

It was more strongly true for benchmarks which are not communication—
intensive. The only benchmark which failed the hypothesis was RADIX,
which requires a large amount of many—to—one and one-to-many communi-
cation every iteration.

The effect of protocol choice can be overcome by network quality. We
found that increasing network width always dominated the protocol differ-
ences, while decreasing the network delay dominated protocol differences only
“most of the time.”

Further, it could be said that designers should dominate the protocol
differences by the network quality because all programs will benefit from a
better network, and not all benchmarks do better with MESI. As we found,
some do much worse.

4.2 Protocol Importance

The choice of coherence protocol can be an important factor in system design.
We saw that for the majority of the benchmarks we examined, protocol choice
had little effect on performance, while network quality had the primary effect.
However, for the one benchmark which had the worst slow—down, the protocol
also had major impact on performance. Thus protocol choice must be paid

21

special attention to during design: which protocol will perform better for the
expected workloads? There is room here for future work.

4.3 Network Quality Importance

Network quality has the largest impact on performance. A faster network
will improve all programs which communicate, with no performance cost —
the cost involved is engineering and materials cost.

4.4 Application Dependence

Different applications have difference communication requirements. Some,
like RADIX, are very network—intensive, while others tolerate low—quality
networks with little performance degradation (FFT).

4.5 Future Work

We were surprised to see such a wide variance in maximum runtime difference
between the benchmarks. This suggests a larger set of programs should be
studied to get a better idea how a typical workload behaves.

This study has given us some idea about the relative importance of net-
work quality as compared to protocol choice. The next step would be to
compare the hardware and engineering costs to determine how trade-offs

should be made.

22

Chapter 5

References

[0] This Document.
http://www.cae.wisc.edu/ smithz/texts/ece757-report/report.ps

[1] P. SWEAZEY and A. J. SMITH, “A Class of Compatible Cache Con-
sistency Protocols and their Support by the IEEE Futurebus”, Proc. Thir-
teenth International Symposium on Computer Architecture, Tokyo, Japan

(June 1986), 414-423.

[2] S. V. ADVE and K. GHARACHORLOO, “Shared Memory Consistency
Models: A Tutorial”, IEEE Computer, 29, 12 (December 1996), 66-76.

3] V. S. PAIL, P. RANGANATHAN, and S. V. ADVE, “RSIM Reference
Manual — Version 1.0”, Rice University, Dept of ECE, Technical Report
9705, August 1997.

[4] Condor HTC Homepage. http://www.cs.wisc.edu/condor/, April 1998.

[5] J. P. SINGH, W. WEBER, and A. GUPTA, “SPLASH: Stanford Parallel
Applications for Shared—Memory”, Stanford University, Computer Systems
Laboratory.

[6] S. C. WOO, M. OHARA, E. TORRIE, J. P. SINGH, and A. GUPTA,
“The SPLASH-2 Programs: Characterization and Methodological Consider-
ations”, ISCA 1995.

23

[7] PAT, RANGANATHAN, ADVE, and HARTON, “An Evaluation of Mem-
ory Consistency Models for Shared Memory Systems with ILP Processors”,
ASPLOS 1996.

24

