\def\leftdisplay#1$${\leftline{\hskip .5in \indent$\displaystyle{#1}$}$$} \everydisplay{\leftdisplay} \parindent = 0pt \def\tilde{\char126} \def\boxit#1{\vbox{\hrule\hbox{\strut \vrule\ #1 \vrule}\hrule}\par} \centerline {\bf CALCULUS 223} \centerline {\sl Final Exam Study Sheet} \vskip .5in \boxit{\bf Derivatives and Partials} $$\nabla f\left(x,y,z\right) = \pmatrix{f_x \cr f_y \cr f_z \cr}$$ {\bf Maxima/Minima} { \parindent .4in \item{i)} $f$ has a {\bf local maximum} at $(a,b)$ if $f_{xx},f_{yy} < 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at $(a,b)$; \item{ii)} $f$ has a {\bf local minimum} at $(a,b)$ if $f_{xx},f_{yy} > 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at $(a,b)$; \item{iii)} $f$ has a {\bf saddle point} at $f_{xx}f_{yy} - f_{xy}^2 < 0$ at $(a,b)$; \item{iv)} The test is {\it inconclusive} at $(a,b)$ if $f_{xx}f_{yy} - f_{xy}^2 = 0${} at $(a,b)$. Use different method. } \medskip {\bf Tangent Plane} at point $p$ when: $$\nabla f|_p \cdot \pmatrix{\Delta x \cr \Delta y \cr \Delta z \cr} = 0$$ {\bf LaGrange Muliplier} $$\nabla f = \lambda \nabla g \hbox{\ and\ } g(x,y,z) = 0$$ \medskip \hrule \medskip \boxit{\bf Multiple Integrals} $$A_R = \int \int_R r\,dr\,d\theta = \int \int_R \,dy\,dx$$ $$\int_0^{2\pi} \int_0^\pi \int_0^1 \,\rho^2 \sin(\phi)\,dr\,d\phi\,d\theta$$ $$\int_0^{2\pi} \int_{r_i}^{r_o} \int_{z_a}^{z_b} \,r\,dz\,dr\,d\theta$$ $$\int_{y_a}^{y_b} \int_{x_a}^{x_b} \int_{z_a}^{z_b}\,dz\,dx\,dy$$ {\bf Polar} $$x = r\cos(\theta) \hskip .5in y = r\sin(\theta)$$ {\bf Spherical} $$x = \rho\sin(\phi)\cos(\theta) \hskip .4in y = \rho\cos(\phi)\sin(\theta) \hskip .4in z = \rho\cos(\phi)$$ $$\rho^2 = x^2 + y^2 + z^2$$ {\bf Change of Variables $x,y$ to $u,v$} $$J(u,v) = \left\|\matrix{ {\partial x \over \partial u } {\partial x \over \partial v}\cr {\partial y \over \partial u} {\partial y \over \partial v}\cr}\right\| = {\partial(x,y)\over\partial(u,v)}$$ {\bf Mass and Moment} $$\hbox{\bf Density\ } = \delta(x,y)$$ $$\hbox{\bf Mass\ }M = \int\int\delta(x,y)\,dA$$ {\bf First Moments\ } $$M_x = \int\int y\delta(x,y)\,dA \hskip .5in M_y = \int\int x\delta(x,y)\,dA$$ {\bf Center of Mass} $$\bar x = {M_y \over M} \hskip .4in \bar y = {M_x \over M}$$ {\bf Moments of Inertia (second moments)} $$\hbox{About the $x$ axis\ }I_x = \int \int y^2\delta(x,y)\,dA$$ $$\hbox{About the $y$ axis\ }I_y = \int \int x^2\delta(x,y)\,dA$$ $$\hbox{About the origin\ }I_0 = \int \int \left(x^2 + y^2\right)\delta(x,y)\,dA = I_x + I_y$$ $$\hbox{About line $L$\ } I_L = \int \int r^2(x,y)\delta(x,y)\,dA \hskip .3in \hbox{where $r(x,y)$ is the distance from $L$ to $(x,y)$}$$ {\bf Radii of Gyration} $$\hbox{About the $x$ axis\ }R_x = \sqrt{{I_x \over M}}$$ $$\hbox{About the $y$ axis\ }R_y = \sqrt{{I_y \over M}}$$ $$\hbox{About the origin\ }R_0 = \sqrt{{I_0 \over M}}$$ \medskip \hrule \medskip \boxit{\bf Line Integrals} {\bf Line Integral} {\sl Find mass of string.} $$\int F(s)\,ds = \int F(s) \sqrt{\left(x'\right)^2+\left(y'\right)^2+\left(z'\right)^2}\,dt$$ {\bf Circulation} {\sl Work through vector field.} $$\oint M\,dx + N\,dy = \int \int_R \left({\partial N \over \partial x} - {\partial M \over \partial y}\right)\,dx\,dy = \int\vec F \cdot \,d\vec r = \int\vec F \cdot \vec T \,ds $$ $$d\vec r = \nabla \vec r\,dt$$ $$F = \pmatrix{ M \cr N \cr }$$ {\bf Circulation Density} $$\hbox{\bf Curl\ } = {\partial N \over \partial x} - {\partial M \over \partial y}$$ {\bf Flux} $$ \oint M\,dy - N\,dx = \int \left( M {dy \over dt} - N {dx \over dt} \right) \,dt = \int\int_R \left({\partial M \over \partial x} + {\partial N \over \partial y}\right)\,dx\,dy = \int_a^b \vec F \cdot \left({\partial y \over \partial t} \vec i - {\partial x \over \partial t} \vec j\right)\,dt$$ {\bf Flux Density} $$ {\partial M \over \partial x} + {\partial N \over \partial y}$$ {\bf Green's Theorem} $$\oint_CM\,dy - N\,dx = \int\int_R\left({\partial M \over \partial x} + {\partial N \over \partial y}\right)\,dx\,dy$$ {\bf Green's Theorem Area Formula} $$\hbox{Area of\ }R = {1 \over 2}\oint_C x\,dy - y\,dx$$ \medskip \hrule \medskip \boxit{\bf First Order Differential Equations} {\bf Seperable\ }{\sl Form} $P(x)dx = Q(y)dy$ { \parindent .8in \item{1.} Integrate. } {\bf Exact\ }{\sl Form} $Mdx + Ndy = 0$ when $M_y = N_x$ { \parindent .8in \item{1.} $\phi = \int M\,dx = f + h(y)$ \item{2.} $h'(y) = N - \phi_y$ \hskip .1in because \hskip .1in $\phi_y = f_y + h'(y)$ \item{3.} $h(y) = \int h'(y)\,dy$ \item{4.} $\phi = f + h(y)$ } {\bf Linear\ }{\sl Form} $y' + p(x)y = q(x)$ { \parindent .8in \item{1.} $m(x) = e^{\int p(x)\,dx}$ \item{2.} $\int (my)'\,dx = \int m(x)q(x)\,dx$ \item{3.} $y = {f + C \over m(x)}$ } \medskip \hrule \medskip \boxit{\bf Second Order Differential Equations} {\bf Homogeneous Linear\ }{\sl Form} $y'' + ay' + b = 0$ { \parindent .8in \item{1.} $r^2 + ar + b = 0$ \hskip .1 in find $r$. \item{2.} $r_1$, $r_2$ Real, and $r_1 \ne r_2$ \hskip .2in $y = C_1e^{r_1x}+C_2e^{r_2x}$ \item{3.} $r_1$, $r_2$ Real, and $r_1 = r_2$ \hskip .2in $y = (C_1x + C_2)e^{r_1x}$ \item{4.} $r_1$, $r_2$ Complex Conjugates, $\alpha \pm \beta i$ \hskip .2in $y = e^{\alpha x}(C_1\cos(\beta x)+ C_2\sin(\beta x))$ } {\bf Nonhomogeneous Linear\ }{\sl Form} $y'' + ay' + b = f(x)$ { Method 1 \parindent .8in \item{1.} Find $y_h$. \item{2.} Find $y_p$ in same form as $f$. \itemitem {a.} $C$ try $A$ or $Ax$ \itemitem {b.} $x^2$ try $Ax^2 + Bx + C$ \itemitem {c.} $\cos(2x)$ try $A\cos(2x) + B\sin(2x)$ \item{3.} Get $y_p = f$ \item{4.} $y = y_h + y_p$ } { Method 2 \parindent .8in \item{1.} Find $y_h$. \item{2.} $y_p = v_1y_1 + v_2y_2$ \hskip .5in $v_1(x)$, $v_2(x)$ \hskip .5in (match form) \item{2.} Solve \hskip .1in $v_1'y_1 + v_2'y_2 = 0$ and $v_1'y_1' + v_2'y_2' = f(x)$ for $v_1$, $v_2$. \item{3.} $y = y_h + y_p$ } \medskip \hrule \medskip \bye |